Browsing by Author "Pryer, Kathleen M"
Results Per Page
Sort Options
Item Open Access A diploids-first approach to species delimitation and interpreting polyploid evolution in the fern genus astrolepis (pteridaceae)(Systematic Botany, 2010-04-01) Beck, James B; Windham, Michael D; Yatskievych, George; Pryer, Kathleen MPolyploidy presents a challenge to those wishing to delimit the species within a group and reconstruct the phylogenetic relationships among these taxa. A clear understanding of the tree-like relationships among the diploid species can provide a framework upon which to reconstruct the reticulate events that gave rise to the polyploid lineages. In this study we apply this "diploids-first" strategy to the fern genus Astrolepis (Pteridaceae). Diploids are identified using the number of spores per sporangium and spore size. Analyses of plastid and low-copy nuclear sequence data provide well-supported estimates of phylogenetic relationships, including strong evidence for two morphologically distinctive diploid lineages not recognized in recent treatments. One of these corresponds to the type of Notholaena deltoidea, a species that has not been recognized in any modern treatment of Astrolepis. This species is resurrected here as the new combination Astrolepis deltoidea . The second novel lineage is that of a diploid initially hypothesized to exist by molecular and morphological characteristics of several established Astrolepis allopolyploids. This previously missing diploid species is described here as Astrolepis obscura. © Copyright 2010 by the American Society of Plant Taxonomists.Item Open Access A drought-driven model for the evolution of obligate apomixis in ferns: evidence from pellaeids (Pteridaceae).(American journal of botany, 2021-02-23) Grusz, Amanda L; Windham, Michael D; Picard, Kathryn T; Pryer, Kathleen M; Schuettpelz, Eric; Haufler, Christopher HPremise
Xeric environments impose major constraints on the fern life cycle, yet many lineages overcome these limitations by evolving apomixis. Here, we synthesize studies of apomixis in ferns and present an evidence-based model for the evolution and establishment of this reproductive strategy, focusing on genetic and environmental factors associated with its two defining traits: the production of "unreduced" spores (n = 2n) and the initiation of sporophytes from gametophyte tissue (i.e., diplospory and apogamy, respectively).Methods
We evaluated existing literature in light of the hypothesis that abiotic characteristics of desert environments (e.g., extreme diurnal temperature fluctuations, high light intensity, and water limitation) drive the evolution of obligate apomixis. Pellaeid ferns (Cheilanthoideae: Pteridaceae) were examined in detail, as an illustrative example. We reconstructed a plastid (rbcL, trnG-trnR, atpA) phylogeny for the clade and mapped reproductive mode (sexual versus apomictic) and ploidy across the resulting tree.Results
Our six-stage model for the evolution of obligate apomixis in ferns emphasizes the role played by drought and associated abiotic conditions in the establishment of this reproductive approach. Furthermore, our updated phylogeny of pellaeid ferns reveals repeated origins of obligate apomixis and shows an increase in the frequency of apomixis, and rarity of sexual reproduction, among taxa inhabiting increasingly dry North American deserts.Conclusions
Our findings reinforce aspects of other evolutionary, physiological, developmental, and omics-based studies, indicating a strong association between abiotic factors and the establishment of obligate apomixis in ferns. Water limitation, in particular, appears critical to establishment of this reproductive mode.Item Open Access A Hyb-Seq phylogeny of Boechera and related genera using a combination of Angiosperms353 and Brassicaceae-specific bait sets.(American journal of botany, 2023-10) Hay, Nikolai M; Windham, Michael D; Mandáková, Terezie; Lysak, Martin A; Hendriks, Kasper P; Mummenhoff, Klaus; Lens, Frederic; Pryer, Kathleen M; Bailey, C DonovanPremise
Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae.Methods
To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods.Results
Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes.Conclusions
This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.Item Open Access A Next-Generation Approach to Systematics in the Classic Reticulate Polypodium vulgare Species Complex (Polypodiaceae)(2014) Sigel, Erin MackeyThe Polypodium vulgare complex (Polypodiaceae) comprises a well-studied group of fern taxa whose members are cryptically differentiated morphologically and have generated a confusing and highly reticulate species cluster. Once considered a single species spanning much of northern Eurasia and North America, P. vulgare has been segregated into approximately 17 diploid and polyploid taxa as a result of cytotaxonomic work, hybridization experiments, and isozyme studies conducted during the 20th century. Despite considerable effort, however, the evolutionary relationships among the diploid members of the P. vulgare complex remain poorly resolved, and several taxa, particularly allopolyploids and their diploid progenitors, remain challenging to delineate morphologically due to a dearth of stable diagnostic characters. Furthermore, compared to many well-studied angiosperm reticulate complexes, relatively little is known about the number of independently-derived lineages, distribution, and evolutionary significance of the allopolyploid species that have formed recurrently. This dissertation is an attempt to advance systematic knowledge of the Polypodium vulgare complex and establish it as a "model" system for investigating the evolutionary consequences of allopolyploidy in ferns.
Chapter I presents a diploids-only phylogeny of the P. vulgare complex and related species to test previous hypotheses concerning relationships within Polypodium sensu stricto. Analyses of sequence data from four plastid loci (atpA, rbcL, matK, and trnG-trnR) recovered a monophyletic P. vulgare complex comprising four well-supported clades. The P. vulgare complex is resolved as sister to the Neotropical P. plesiosorum group and these, in turn, are sister to the Asian endemic Pleurosoriopsis makinoi. Divergence time analyses incorporating previously derived age constraints and fossil data provide support for an early Miocene origin for the P. vulgare complex and a late Miocene-Pliocene origin for the four major diploid lineages of the complex, with the majority of extant diploid species diversifying from the late Miocene through the Pleistocene. Finally, node age estimates are used to reassess previous hypotheses, and to propose new hypotheses, about the historical events that shaped the diversity and current geographic distribution of the diploid species of the P. vulgare complex.
Chapter II addresses reported discrepancies regarding the occurrence of Polypodium calirhiza in Mexico. The original paper describing this taxon cited collections from Mexico, but the species was omitted from the recent Pteridophytes of Mexico. Originally treated as a tetraploid cytotype of P. californicum, P. calirhiza now is hypothesized to have arisen through hybridization between P. glycyrrhiza and P. californicum. The allotetraploid can be difficult to distinguish from either of its putative parents, but especially so from P. californicum. These analyses show that a combination of spore length and abaxial rachis scale morphology consistently distinguishes P. calirhiza from P. californicum and confirm that both species occur in Mexico. Although occasionally found growing together in the United States, the two species are strongly allopatric in Mexico, where P. californicum is restricted to coastal regions of the Baja California peninsula and neighboring Pacific islands and P. calirhiza grows at high elevations in central and southern Mexico. The occurrence of P. calirhiza in Oaxaca, Mexico, marks the southernmost extent of the P. vulgare complex in the Western Hemisphere.
Chapter III examines a case of reciprocal allopolyploid origins in the fern Polypodium hesperium and presents it as a natural model system for investigating the evolutionary potential of duplicated genomes. In allopolyploids, reciprocal crosses between the same progenitor species can yield lineages with different uniparentally inherited plastid genomes. While likely common, there are few well-documented examples of such reciprocal origins. Using a combination of uniparentally inherited plastid and biparentally inherited nuclear sequence data, we investigated the distributions and relative ages of reciprocally formed lineages in Polypodium hesperium, an allotetraploid fern that is broadly distributed in western North America. The reciprocally-derived plastid haplotypes of Polypodium hesperium are allopatric, with populations north and south of 42˚ N latitude having different plastid genomes. Biogeographic information and previously estimated ages for the diversification of its diploid progenitors, lends support for middle to late Pleistocene origins of P. hesperium. Several features of Polypodium hesperium make it a particularly promising system for investigating the evolutionary consequences of allopolyploidy. These include reciprocally derived lineages with disjunct geographic distributions, recent time of origin, and extant diploid progenitor lineages.
This dissertation concludes by demonstrating the utility of the allotetraploid Polypodium hesperium for understanding how ferns utilize the genetic diversity imparted by allopolyploidy and recurrent origins. Chapter IV details the use of high-throughput sequencing technologies to generate a reference transcriptome for Polypodium, a genus without preexisting genomic resources, and compare patterns of total and homoeolog-specific gene expression in leaf tissue of reciprocally formed lineages of P. hesperium. Genome-wide expression patterns of total gene expression and homoeolog expression ratios are strikingly similar between the lineages--total gene expression levels mirror those of the diploid progenitor P. amorphum and homoeologs derived from P. amorphum are preferentially expressed. The unprecedented levels of unbalanced expression level dominance and unbalanced homoeolog expression bias found in P. hesperium supports the hypothesis that these phenomena are pervasive consequences of allopolyploidy in plants.
Item Open Access A numerical analysis of chromatographic profiles in North American taxa of the fern genus Gymnocarpium(Canadian Journal of Botany, 1983-10-01) Pryer, Kathleen M; Britton, Donald M; McNeill, JohnAs part of a systematic investigation of the genus Gymnocarpium in North America, a survey of chromatographic profiles in species and hybrids of the genus was initiated. It was established through cluster analysis and ordination of the phenolic data that morphologically distinguishable taxa of Gymnocarpium can be recognized by their chromatographic profiles alone. These data provide supportive evidence for the recognition of G. robertianum and G. jessoense ssp. parvulum as distinct taxa and for the hybrid status of G. × intermedium. They also suggest that, as currently circumscribed, G. jessoense ssp. jessoense is a heterogeneous taxon.Item Open Access Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.(Evolution; international journal of organic evolution, 2010-09) Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen MMolecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.Item Open Access Applying machine learning to investigate long-term insect-plant interactions preserved on digitized herbarium specimens.(Applications in plant sciences, 2020-06) Meineke, Emily K; Tomasi, Carlo; Yuan, Song; Pryer, Kathleen MPremise:Despite the economic significance of insect damage to plants (i.e., herbivory), long-term data documenting changes in herbivory are limited. Millions of pressed plant specimens are now available online and can be used to collect big data on plant-insect interactions during the Anthropocene. Methods:We initiated development of machine learning methods to automate extraction of herbivory data from herbarium specimens by training an insect damage detector and a damage type classifier on two distantly related plant species (Quercus bicolor and Onoclea sensibilis). We experimented with (1) classifying six types of herbivory and two control categories of undamaged leaf, and (2) detecting two of the damage categories for which several hundred annotations were available. Results:Damage detection results were mixed, with a mean average precision of 45% in the simultaneous detection and classification of two types of damage. However, damage classification on hand-drawn boxes identified the correct type of herbivory 81.5% of the time in eight categories. The damage classifier was accurate for categories with 100 or more test samples. Discussion:These tools are a promising first step for the automation of herbivory data collection. We describe ongoing efforts to increase the accuracy of these models, allowing researchers to extract similar data and apply them to biological hypotheses.Item Open Access Between two fern genomes.(Gigascience, 2014) Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul GFerns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.Item Open Access Cheilanthes ecuadorensis: A New Species of Cheilanthes s. s. (Pteridaceae) from Northern South America(Systematic Botany, 2021-04-01) Sosa, Karla; Pryer, Kathleen M; Huiet, Layne; Yatskievych, George; Windham, Michael DOngoing research on the taxonomically complex genus Cheilanthes (Pteridaceae; Cheilanthoideae) has resulted in the identification of a new species from Loja Province in Ecuador, Cheilanthes ecuadorensis, described and illustrated herein. Originally collected in 1988 and identified as C. cf. rufopunctata, C. ecuadorensis is clearly distinct from that species in having pubescent adaxial blade surfaces and narrow, poorly-differentiated false indusia (rather than the glabrous adaxial surfaces and wide false indusia of C. rufopunctata). Among the South American species currently included in Cheilanthes, C. ecuadorensis is superficially most similar to C. pilosa. However, our molecular phylogenetic analyses indicate that C. ecuadorensis is sister to C. micropteris, the morphologically disparate generitype of Cheilanthes. Here we examine the phylogenetic relationships, morphology, cytogenetics, and geography of these four South American Cheilanthes species in a study that, once again, highlights the importance of herbaria in the process of new species discovery.Item Open Access Crowdfunding the Azolla fern genome project: a grassroots approach.(Gigascience, 2014) Li, Fay-Wei; Pryer, Kathleen MMuch of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach.Item Open Access Deciding among green plants for whole genome studies.(Trends in plant science, 2002-12) Pryer, Kathleen M; Schneider, Harald; Zimmer, Elizabeth A; Ann Banks, JoRecent comparative DNA-sequencing studies of chloroplast, mitochondrial and ribosomal genes have produced an evolutionary tree relating the diversity of green-plant lineages. By coupling this phylogenetic framework to the explosion of information on genome content, plant-genomic efforts can and should be extended beyond angiosperm crop and model systems. Including plant species representative of other crucial evolutionary nodes would produce the comparative information necessary to understand fully the organization, function and evolution of plant genomes. The simultaneous development of genomic tools for green algae, bryophytes, 'seed-free' vascular plants and gymnosperms should provide insights into the bases of the complex morphological, physiological, reproductive and biochemical innovations that have characterized the successful transition of green plants to land.Item Open Access DNA barcoding exposes a case of mistaken identity in the fern horticultural trade.(Molecular ecology resources, 2010-11) Pryer, Kathleen M; Schuettpelz, Eric; Huiet, Layne; Grusz, Amanda L; Rothfels, Carl J; Avent, Tony; Schwartz, David; Windham, Michael DUsing cheilanthoid ferns, we provide an example of how DNA barcoding approaches can be useful to the horticultural community for keeping plants in the trade accurately identified. We use plastid rbcL, atpA, and trnG-R sequence data to demonstrate that a fern marketed as Cheilanthes wrightii (endemic to the southwestern USA and northern Mexico) in the horticultural trade is, in fact, Cheilanthes distans (endemic to Australia and adjacent islands). Public and private (accessible with permission) databases contain a wealth of DNA sequence data that are linked to vouchered plant material. These data have uses beyond those for which they were originally generated, and they provide an important resource for fostering collaborations between the academic and horticultural communities. We strongly advocate the barcoding approach as a valuable new technology available to the horticulture industry to help correct plant identification errors in the international trade.Item Open Access Evolution and Diversification of Farinose Ferns in Xeric Environments: A Case Study Using Notholaena standleyi Maxon as a Model(2020) Kao, Tzu-TongNot all ferns grow in moist and shaded habitats. One notable example is the ecologically unusual clade of notholaenids. With approximately 40 species, the notholaenids have adapted to and diversified within the deserts of Mexico and the southwestern United States. In my dissertation, I studied the evolution and diversification of notholaenid ferns, using an approach that integrates data from multiple sources: biochemistry, biogeography, cytology, ecological niche modeling, molecular phylogeny, morphology, and physiology.
In Chapter 1, I infer a species phylogeny for notholaenid ferns using both nuclear and plastid DNA sequences, and reconstruct the evolutionary history of “farina” (powdery exudates of lipophilic flavonoid aglycones), a characteristic drought-adapted trait, that occurs on both the gametophytic and sporophytic phases of members of the the clade. Forty-nine notholaenid and twelve outgroup samples were selected for these analyses. Long (ca. 1 kb) low-copy nuclear sequences for four loci were retrieved using a recently developed amplicon sequencing protocol on the PacBio Sequel platform and a bioinformatics pipeline PURC; plastid sequences from three loci were retrieved using Sanger sequencing. Each nuclear/plastid dataset was first analyzed individually using maximum likelihood and Bayesian inference, and the species phylogeny was inferred using *BEAST. Ancestral states were reconstructed using likelihood (re-rooting method) and MCMC (stochastic mapping method) approaches. Ploidy levels were inferred using chromosome counts corroborated by spore diameter measurements. My phylogenetic analyses results are roughly congruent with previous phylogenies inferred using only plastid data; however, several incongruences were observed between them. Hybridization events among recognized species of the notholaenid clade appear to be relatively rare, compared to what is observed in other well-studied fern genera. All characters associated with farina production in the group appear to be homoplastic and have complex evolutionary histories.
In Chapter 2, I focus on the infraspecific diversification of Notholaena standleyi, a species that thrives in the deserts of the southwestern United States and Mexico and has several “chemotypes” that express differences in farina color and chemistry. Forty-eight samples were selected from across the geographic distribution of N. standleyi. Phylogenetic relationships were inferred using four plastid makers and five single/low-copy nuclear markers. Sequences were retrieved using PacBio and the PURC pipeline. Ploidy levels were inferred from relative spore size measurements calibrated with chromosome counts, and farina chemistry was compared using thin-layer chromatography (TLC). My studies of Notholaena standleyi reveal a complex history of infraspecific diversification traceable to a variety of evolutionary drivers including classic allopatry, parapatry with or without changes in geologic substrate, and sympatric divergence through polyploidization. Four divergent clades were recognized within the species. Three roughly correspond to previously recognized chemotypes: gold (G), yellow (Y), and pallid/yellow-green (P/YG). The fourth clade, cryptic (C), is newly reported here. The diploid clades G and Y are found in the Sonoran and Chihuahuan Deserts, respectively; they co-occur (and hybridize) in the Pinaleño Mts. of eastern Arizona. Clades G and Y are estimated to have diverged in the Pleistocene, congruent with the postulated timing of climatological events that divide these two deserts. Clade P/YG is tetraploid and partially overlaps the distribution of clade Y in the eastern parts of the Chihuahuan Desert. However, PY/G is apparently confined to limestone, a geologic substrate rarely occupied by members of the other clades. The newly discovered diploid clade, cryptic (C), is distributed in the southern Mexican states of Oaxaca and Puebla and is highly disjunct from the other three clades.
In Chapter 3, I study the ecological niche differentiation among the three major chemotypes––G, Y, and P/YG. Using both ordination and species distribution modelling techniques, the ecological niches for each chemotype were characterized and compared. The main environmental drivers for their distributions were identified, their suitable habitats in both geographic and environmental spaces were predicted, and their niche equivalencies and similarities were tested. My ecological niche analyses results suggest that all three chemotypes are ecologically diverged. The ecological niches of the two parapatric, sister diploid chemotypes, G and Y, are significantly different from one another. Chemotype G occupies a very extreme niche with higher solar radiation, and lower rainfall and higher temperatures in the wettest quarter. The niche space of tetraploid chemotype P/YG is similar but not equivalent to the other two chemotypes. Its distribution model is highly influenced by the high percentage of Calcids and warmer temperatures in the wet season, reflecting the fact that it is confined to limestone in areas of lower elevation/latitude.
In Chapter 4, I gather together all my other studies related to Notholaena standleyi, including: 1) morphological and anatomical observations of its desiccation-tolerant leaf, with special focus on the farina; 2) two cases of hybridization between the chemotypes, one between the diploid chemotype Y and tetraploid chemotype YG, and another between diploid chemotypes Y and G; and 3) morphological and physiological comparisons between the two diploid chemotypes Y and G. My plan is to finalize these studies and submit them for publication in the near future.
In Chapter 5, I summarize collaborative contributions that I made to other fern studies during my Ph.D.
Item Open Access Evolutionary Patterns and Processes in the Desert-Adapted Fern Genus Myriopteris (Pteridaceae)(2014) Grusz, Amanda LeeThis dissertation investigates the processes of hybridation, polyploidy, and apomixis and their roles in the evolution of myriopterid ferns. First, I examine patterns of hybridization in members of the Cheilanthes yavapensis complex using a suite of techiniques, ranging from molecules to morphology--including isozymes, spore measurements, and molecular phylogenetics based on chloroplast and nuclear DNA markers--to elucidate relationships in this notorious group of ferns. Second, I utilize the rules of traditional taxonomy set by the International Code of Botanical Nomenclature to recircucmscribe and resurrect the genus Myriopteris from within cheilanthoid ferns. This revised classification is bolstered by results from my molecular phylogenetic analysis of DNA sequence data in the subsequent chapter. Then, using morphological and cytological analyses, I examine the evolution of indument, leaf and rachis shape, vernation, chromosome number, and reproductive mode across the myriopterid tree. In my concluding chapter I develop microsatellite markers for the apomictic triploid, M. lindheiemeri, and explore whether premeiotic chromosome duplication facilitates the production of genetically distinct offspring in this otherwise asexual lineage.
Item Open Access Fern Phylogeny Based on rbcL Nucleotide Sequences(American Fern Journal, 1995-10) Hasebe, Mitsuyasu; Wolf, Paul G; Pryer, Kathleen M; Ueda, Kunihiko; Ito, Motomi; Sano, Ryosuke; Gastony, Gerald J; Yokoyama, Jun; Manhart, James R; Murakami, Noriaki; Crane, Edmund H; Haufler, Christopher H; Hauk, Warren DItem Open Access Ferns diversified in the shadow of angiosperms.(Nature, 2004-04) Schneider, Harald; Schuettpelz, Eric; Pryer, Kathleen M; Cranfill, Raymond; Magallón, Susana; Lupia, RichardThe rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems.Item Open Access Identifying multiple origins of polyploid taxa: a multilocus study of the hybrid cloak fern (Astrolepis integerrima; Pteridaceae).(American journal of botany, 2012-11) Beck, James B; Allison, James R; Pryer, Kathleen M; Windham, Michael DPREMISE OF THE STUDY: Molecular studies have shown that multiple origins of polyploid taxa are the rule rather than the exception. To understand the distribution and ecology of polyploid species and the evolutionary significance of polyploidy in general, it is important to delineate these independently derived lineages as accurately as possible. Although gene flow among polyploid lineages and backcrossing to their diploid parents often confound this process, such post origin gene flow is very infrequent in asexual polyploids. In this study, we estimate the number of independent origins of the apomictic allopolyploid fern Astrolepis integerrima, a morphologically heterogeneous species most common in the southwestern United States and Mexico, with outlying populations in the southeastern United States and the Caribbean. METHODS: Plastid DNA sequence and AFLP data were obtained from 33 A. integerrima individuals. Phylogenetic analysis of the sequence data and multidimensional clustering of the AFLP data were used to identify independently derived lineages. KEY RESULTS: Analysis of the two datasets identified 10 genetic groups within the 33 analyzed samples. These groups suggest a minimum of 10 origins of A. integerrima in the northern portion of its range, with both putative parents functioning as maternal donors, both supplying unreduced gametes, and both contributing a significant portion of their genetic diversity to the hybrids. CONCLUSIONS: Our results highlight the extreme cryptic genetic diversity and systematic complexity that can underlie a single polyploid taxon.Item Open Access Looking Back on 130 Years of Fern and Lycophyte Research in Glacier National Park, Montana: A Modern Taxonomic Account(American Fern Journal, 2021-11-05) Heron, Keegan; Windham, Michael D; Farrar, Donald R; Pryer, Kathleen MItem Open Access Myriopteris grusziae: A New Species from Texas and Oklahoma Segregated from the Chihuahuan Desert Taxon M. scabra (Pteridaceae)(Systematic botany., 2022-09) Windham, Michael D; Picard, Kathryn T; Pryer, Kathleen MMyriopteris scabra (until recently called Cheilanthes horridula) is a xeric-adapted fern species, endemic to the southwestern United States and northern Mexico. It is one of the most recognizable ferns in North America due to the unusual nature of the indument present on its adaxial leaf surfaces. This consists of rigid, multicellular trichomes with glassy, needle-like apices and compact conical bodies that are partially embedded in the leaf surface to form swollen, pustulate bases. Despite the seemingly distinctive nature of M. scabra, published chromosome counts indicate that collections assigned to this taxon encompass both diploids (n = 29) and tetraploids (n = 58). Here we investigate this case of cryptic diversity by integrating data from cytogenetic and spore analyses, observations of sporophyte morphology, and geographic distributions. Myriopteris scabra s.l. is shown to comprise two genetically disparate, morphologically recognizable taxa that exhibit little or no geographic overlap. The tetraploid taxon is described as a new species, M. grusziae, which completely supplants diploid M. scabra in the northeastern portion of its range (central Texas and south-central Oklahoma). This presumed allotetraploid is most like M. scabra but differs in having ultimate segments with adaxial trichomes that are longer, more flexible, mostly linear, and superficially attached. In addition, tetraploid M. grusziae has larger, more abundant scales that largely conceal the dark, sclerified leaf rachises, and it produces consistently larger spores than diploid M. scabra. We hypothesize that M. grusziae is an allotetraploid hybrid that acquired half of its chromosomes from M. scabra. However, the identity of the other diploid parent has yet to be resolved.Item Open Access NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches.(Nature communications, 2019-06-14) Yang, Emily J; Yoo, Chan Yul; Liu, Jiangxin; Wang, He; Cao, Jun; Li, Fay-Wei; Pryer, Kathleen M; Sun, Tai-Ping; Weigel, Detlef; Zhou, Pei; Chen, MengPhytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs). PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen in Arabidopsis that identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling for PhAPG activation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex for PhAPG transcription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes control PhAPG expression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins.