Browsing by Author "Qi, Y"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial(PLOS ONE) Blocker, SJ; Mowery, YM; Holbrook, MD; Qi, Y; Kirsch, DG; Johnson, GA; Badea, CTItem Open Access High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing.(Biomed Opt Express, 2011-09-01) Zhang, X; Badea, C; Hood, G; Wetzel, A; Qi, Y; Stiles, J; Johnson, GAWe present a method for high-resolution reconstruction of fluorescent images of the mouse thorax. It features an anatomically guided sampling method to retrospectively eliminate problematic data and a parallel Monte Carlo software package to compute the Jacobian matrix for the inverse problem. The proposed method was capable of resolving microliter-sized femtomole amount of quantum dot inclusions closely located in the middle of the mouse thorax. The reconstruction was verified against co-registered micro-CT data. Using the proposed method, the new system achieved significantly higher resolution and sensitivity compared to our previous system consisting of the same hardware. This method can be applied to any system utilizing similar imaging principles to improve imaging performance.Item Open Access MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.(Tomography (Ann Arbor, Mich.), 2020-03) Holbrook, MD; Blocker, SJ; Mowery, YM; Badea, A; Qi, Y; Xu, ES; Kirsch, DG; Johnson, GA; Badea, CTSmall-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.