Browsing by Author "Rajic, Zrinka"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity.(Free radical biology & medicine, 2012-05) Rajic, Zrinka; Tovmasyan, Artak; Spasojevic, Ivan; Sheng, Huaxin; Lu, Miaomiao; Li, Alice M; Gralla, Edith B; Warner, David S; Benov, Ludmil; Batinic-Haberle, InesThe Mn porphyrins of k(cat)(O(2)(.-)) as high as that of a superoxide dismutase enzyme and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic the site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP(5+) is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP(5+) has been in part attributed to its micellar properties, i.e., the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH(2) group by an oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP(5+). The high SOD-like activity is preserved and even enhanced: log k(cat)(O(2)(.-))=7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP(5+) and MnTnHep-2-PyP(5+), respectively. MnTnBuOE-2-PyP(5+) was tested in an O(2)(.-) -specific in vivo assay, aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5-30 μM. MnTnHep-2-PyP(5+) was already toxic at 5 μM, and MnTnHex-2-PyP(5+) became toxic at 30 μM. In a mouse toxicity study, MnTnBuOE-2-PyP(5+) was several-fold less toxic than either MnTnHex-2-PyP(5+) or MnTnHep-2-PyP(5+).Item Open Access Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP5+, and its alkoxyalkyl analogues(JOURNAL OF INORGANIC BIOCHEMISTRY, 2017-04-01) Rajic, Zrinka; Tovmasyan, Artak; de Santana, Otávio L; Peixoto, Isabelle N; Spasojevic, Ivan; do Monte, Silmar A; Ventura, Elizete; Rebouças, Júlio S; Batinic-Haberle, InesItem Open Access Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology.(Inorganic chemistry, 2013-05-06) Tovmasyan, Artak; Weitner, Tin; Sheng, Huaxin; Lu, MiaoMiao; Rajic, Zrinka; Warner, David S; Spasojevic, Ivan; Reboucas, Julio S; Benov, Ludmil; Batinic-Haberle, InesThe different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose, the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E(1/2) for M(III)P/M(II)P redox couple (M = Fe, Mn, P = porphyrin), kcat for the catalysis of O2(•-) dismutation, stability toward peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli, and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ∼7.8. This is additionally evidenced in large differences in the E(1/2) values of M(III)P/M(II)P redox couples. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe relative to Mn center. The differences in the catalysis of O2(•-) dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. On the basis of fairly similar log kcat(O2(•-)) values, a very similar effect on the growth of SOD-deficient E. coli was anticipated by both metalloporphyrins. Yet, while (H2O)2MnTE-2-PyP(5+) was fully efficacious at ≥20 μM, the Fe analogue (OH)(H2O)FeTE-2-PyP(4+) supported SOD-deficient E. coli growth at as much as 200-fold lower doses in the range of 0.1-1 μM. Moreover the pattern of SOD-deficient E. coli growth was different with Mn and Fe porphyrins. Such results suggested a different mode of action of these metalloporphyrins. Further exploration demonstrated that (1) 0.1 μM (OH)(H2O)FeTE-2-PyP(4+) provided similar growth stimulation as the 0.1 μM Fe salt, while the 20 μM Mn salt provides no protection to E. coli; and (2) 1 μM Fe porphyrin is fully degraded by 12 h in E. coli cytosol and growth medium, while Mn porphyrin is not. Stimulation of the aerobic growth of SOD-deficient E. coli by the Fe porphyrin is therefore due to iron acquisition. Our data suggest that in vivo, redox-driven degradation of Fe porphyrins resulting in Fe release plays a major role in their biological action. Possibly, iron reconstitutes enzymes bearing [4Fe-4S] clusters as active sites. Under the same experimental conditions, (OH)(H2O)FePs do not cause mouse arterial hypotension, whereas (H2O)2MnPs do, which greatly limits the application of Mn porphyrins in vivo.Item Open Access Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins.(Dalton transactions (Cambridge, England : 2003), 2011-04) Tovmasyan, Artak G; Rajic, Zrinka; Spasojevic, Ivan; Reboucas, Julio S; Chen, Xin; Salvemini, Daniela; Sheng, Huaxin; Warner, David S; Benov, Ludmil; Batinic-Haberle, InesCationic Mn(III) N-alkylpyridylporphyrins (MnPs) are potent SOD mimics and peroxynitrite scavengers and diminish oxidative stress in a variety of animal models of central nervous system (CNS) injuries, cancer, radiation, diabetes, etc. Recently, properties other than antioxidant potency, such as lipophilicity, size, shape, and bulkiness, which influence the bioavailability and the toxicity of MnPs, have been addressed as they affect their in vivo efficacy and therapeutic utility. Porphyrin bearing longer alkyl substituents at pyridyl ring, MnTnHex-2-PyP(5+), is more lipophilic, thus more efficacious in vivo, particularly in CNS injuries, than the shorter alkyl-chained analog, MnTE-2-PyP(5+). Its enhanced lipophilicity allows it to accumulate in mitochondria (relative to cytosol) and to cross the blood-brain barrier to a much higher extent than MnTE-2-PyP(5+). Mn(III) N-alkylpyridylporphyrins of longer alkyl chains, however, bear micellar character, and when used at higher levels, become toxic. Recently we showed that meta isomers are ∼10-fold more lipophilic than ortho species, which enhances their cellular accumulation, and thus reportedly compensates for their somewhat inferior SOD-like activity. Herein, we modified the alkyl chains of the lipophilic meta compound, MnTnHex-3-PyP(5+) via introduction of a methoxy group, to diminish its toxicity (and/or enhance its efficacy), while maintaining high SOD-like activity and lipophilicity. We compared the lipophilic Mn(III) meso-tetrakis(N-(6'-methoxyhexyl)pyridinium-3-yl)porphyrin, MnTMOHex-3-PyP(5+), to a hydrophilic Mn(III) meso-tetrakis(N-(2'-methoxyethyl)pyridinium-3-yl)porphyrin, MnTMOE-3-PyP(5+). The compounds were characterized by uv-vis spectroscopy, mass spectrometry, elemental analysis, electrochemistry, and ability to dismute O(2)˙(-). Also, the lipophilicity was characterized by thin-layer chromatographic retention factor, R(f). The SOD-like activities and metal-centered reduction potentials for the Mn(III)P/Mn(II)P redox couple were similar-to-identical to those of N-alkylpyridyl analogs: log k(cat) = 6.78, and E(1/2) = +68 mV vs. NHE (MnTMOHex-3-PyP(5+)), and log k(cat) = 6.72, and E(1/2) = +64 mV vs. NHE (MnTMOE-3-PyP(5+)). The compounds were tested in a superoxide-specific in vivo model: aerobic growth of SOD-deficient E. coli, JI132. Both MnTMOHex-3-PyP(5+) and MnTMOE-3-PyP(5+) were more efficacious than their alkyl analogs. MnTMOE-3-PyP(5+) is further significantly more efficacious than the most explored compound in vivo, MnTE-2-PyP(5+). Such a beneficial effect of MnTMOE-3-PyP(5+) on diminished toxicity, improved efficacy and transport across the cell wall may originate from the favorable interplay of the size, length of pyridyl substituents, rotational flexibility (the ortho isomer, MnTE-2-PyP(5+), is more rigid, while MnTMOE-3-PyP(5+) is a more flexible meta isomer), bulkiness and presence of oxygen.Item Open Access Pharmacokinetics, Brain Hippocampus and Cortex, and Mitochondrial Accumulation of a New Generation of Lipophilic Redox-Active Therapeutic, Mn(III) Meso Tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+, in Comparison with its Ethyl and N-hexyl Analogs, MnTE-2-PyP5+ and MnTnHex-2-PyP5+(Free Radical Biology and Medicine, 2013-11) Spasojevic, Ivan; Weitner, Tin; Tovmasyan, Artak; Sheng, Huaxin; Miriyala, Sumitra; Leu, David; Rajic, Zrinka; Warner, David S; Clair, Daret St; Huang, Ting-Ting; Batinic-Haberle, Ines