Browsing by Author "Ramanujam, Nimmi"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.(Theranostics, 2016) Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William CThe treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.Item Open Access A low-cost, portable, and quantitative spectral imaging system for application to biological tissues.(Opt Express, 2010-06-07) Fu, Henry L; Yu, Bing; Lo, Justin Y; Palmer, Greg M; Kuech, Thomas F; Ramanujam, NimmiThe ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').Item Open Access Data set for "Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Application to the detection of residual disease in tumor margins"(2013-03-12) Brown, JQ; Dodd, L; Geradts, J; Harmany, Z; Kennedy, S; Kim, Y; Kirsch, David Guy; Mito, Jeffrey; Mueller, J; Ramanujam, Nimmi; Willett, RebeccaThis is data that is published in the article "Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Application to the detection of residual disease in tumor margins".Item Open Access Design of a Novel Low Cost Point of Care Tampon (POCkeT) Colposcope for Use in Resource Limited Settings.(PLoS One, 2015) Lam, Christopher T; Krieger, Marlee S; Gallagher, Jennifer E; Asma, Betsy; Muasher, Lisa C; Schmitt, John W; Ramanujam, NimmiINTRODUCTION: Current guidelines by WHO for cervical cancer screening in low- and middle-income countries involves visual inspection with acetic acid (VIA) of the cervix, followed by treatment during the same visit or a subsequent visit with cryotherapy if a suspicious lesion is found. Implementation of these guidelines is hampered by a lack of: trained health workers, reliable technology, and access to screening facilities. A low cost ultra-portable Point of Care Tampon based digital colposcope (POCkeT Colposcope) for use at the community level setting, which has the unique form factor of a tampon, can be inserted into the vagina to capture images of the cervix, which are on par with that of a state of the art colposcope, at a fraction of the cost. A repository of images to be compiled that can be used to empower front line workers to become more effective through virtual dynamic training. By task shifting to the community setting, this technology could potentially provide significantly greater cervical screening access to where the most vulnerable women live. The POCkeT Colposcope's concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes. Evaluation with standard optical imaging targets to assess the POCkeT Colposcope against the state of the art digital colposcope and other VIAM technologies. RESULTS: Our POCkeT Colposcope has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our POCkeT Colposcope capturing comparable quality images to commercial systems. CONCLUSION: The POCkeT Colposcope is capable of capturing images suitable for cervical lesion analysis. Our portable low cost system could potentially increase access to cervical cancer screening in limited resource settings through task shifting to community health workers.Item Open Access International Image Concordance Study to Compare a Point-of-Care Tampon Colposcope With a Standard-of-Care Colposcope.(Journal of lower genital tract disease, 2017-04) Mueller, Jenna L; Asma, Elizabeth; Lam, Christopher T; Krieger, Marlee S; Gallagher, Jennifer E; Erkanli, Alaattin; Hariprasad, Roopa; Malliga, JS; Muasher, Lisa C; Mchome, Bariki; Oneko, Olola; Taylor, Peyton; Venegas, Gino; Wanyoro, Anthony; Mehrotra, Ravi; Schmitt, John W; Ramanujam, NimmiObjective
Barriers to cervical cancer screening in low-resource settings include lack of accessible, high-quality services, high cost, and the need for multiple visits. To address these challenges, we developed a low-cost, intravaginal, optical cervical imaging device, the point-of-care tampon (POCkeT) colposcope and evaluated whether its performance is comparable with a standard-of-care colposcope.Materials and methods
There were 2 protocols, which included 44 and 18 patients. For the first protocol, white-light cervical images were collected in vivo, blinded by device, and sent electronically to 8 physicians from high-, middle-, and low-income countries. For the second protocol, green-light images were also collected and sent electronically to the highest performing physician from the first protocol who has experience in both a high- and low-income country. For each image, physicians completed a survey assessing cervix characteristics and severity of precancerous lesions. Corresponding pathology was obtained for all image pairs.Results
For the first protocol, average percent agreement between devices was 70% across all physicians. The POCkeT and standard-of-care colposcope images had 37% and 51% agreement with pathology for high-grade squamous intraepithelial lesions (HSILs), respectively. Investigation of HSIL POCkeT images revealed decreased visibility of vascularization and lack of contrast in lesion margins. After changes were made for the second protocol, the 2 devices achieved similar agreement to pathology for HSIL lesions (55%).Conclusions
Based on the exploratory study, physician interpretation of cervix images acquired using a portable, low-cost POCkeT colposcope was comparable to a standard-of-care colposcope.Item Open Access Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma.(PloS one, 2013-01) Fu, Henry L; Mueller, Jenna L; Javid, Melodi P; Mito, Jeffrey K; Kirsch, David G; Ramanujam, Nimmi; Brown, J QuincyCancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1 × 1.6 mm (3.4 mm(2)) and sub-cellular resolution (4.4 µm). The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick) samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm(-1) used in conjunction with a 4 × 0.1 NA objective (v=0.165). This yielded an optical section thickness of 128 µm and an 8.9 × contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues performed equivalently in regards to nuclear density quantification, to physical frozen sectioning and standard microscopy.Item Open Access Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.(Appl Spectrosc, 2011-02-01) Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, NimmiSteady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.