Browsing by Author "Rathmell, Jeffrey C"
Results Per Page
Sort Options
Item Open Access Akt, Glucose Metabolism, and the Bcl-2 Family(2010) Coloff, Jonathan LouisNormal cells require input from extrinsic growth factors to control proliferation and survival. Recent studies have demonstrated that these same extrinsic signals also regulate cellular metabolism to ensure that metabolism adequately supports the demands of cell function, proliferation, and cell survival. The PI3K/Akt pathway is downstream of many growth factors and can promote both glucose metabolism and cell survival. Aberrant activation of the PI3K/Akt pathway is common in cancer, and its activation can contribute to the growth factor independence that is a hallmark of neoplastic cells. Metabolic demand is high in stimulated and leukemic T cells, and activation of Akt can increase glucose metabolism to meet these requirements. There is great interest in targeting the unique metabolism of cancer cells for cancer therapy, thus making an understanding of the interaction of metabolism and cell death essential.
Akt is also anti-apoptotic and can inhibit cell death by regulating members of the Bcl-2 family. Interestingly, the ability of Akt to prevent cell death is inextricably linked to its metabolic function. Several recent studies have demonstrated that glucose metabolism can affect Bcl-2 to family members to promote cell survival, but the role of Akt-dependent glucose metabolism in the regulation of Bcl-2 family members is not understood. Using a model of growth factor withdrawal-induced apoptosis, we show that Akt prevents cell death by maintaining glucose metabolism to regulate the Bcl-2 family members Puma and Mcl-1, and demonstrate the importance of this pathway in the survival of stimulated T lymphocytes and leukemia.
After growth factor withdrawal, active Akt suppressed Puma induction in abundant glucose, but Puma was rapidly upregulated in glucose-deficient conditions and was necessary and sufficient to promote efficient cell death. Importantly, glucose was not uniquely required, as provision of alternative mitochondrial fuels allowed Akt to suppress Puma and maintain survival. This metabolic regulation of Puma was mediated through partially p53-dependent transcriptional induction as well as control of Puma protein stability.
In addition to inhibiting Puma expression, active Akt prevented the loss of Mcl-1 after growth factor withdrawal by sustaining Mcl-1 protein synthesis in a glucose-dependent manner. Mcl-1 was essential for preventing Bim-induced apoptosis, as Akt could not inhibit Bim induction after growth factor deprivation. Slowing of Mcl-1 synthesis by inhibiting glucose metabolism reversed Mcl-1-mediated resistance of leukemic cells to the Bcl-2 inhibitor ABT-737. Importantly, Akt and glucose-reliant Mcl-1 expression required mTOR-dependent phosphorylation of 4EBP, and treatment with mTOR inhibitors also reversed ABT-737 resistance.
Together, this study demonstrates that Akt promotes cell survival by preventing metabolic checkpoints that stimulate Puma expression and stability and inhibit Mcl-1 synthesis, advancing our understanding of the links between metabolism and cell death. These studies highlight the importance of cellular metabolism--including a potential role for the alternative sugar fructose--in cancer cell survival that may provide a mechanistic understanding to drive development of metabolism-targeted cancer therapies.
Item Open Access Autophagy in Metabolism, Cell Death, and Leukemogenesis(2011) Altman, Brian JamesTissue homeostasis is controlled by the availability of growth factors, which sustain exogenous nutrient uptake and prevent apoptosis. Cancer cells, however, can express constitutively active oncogenic kinases such as BCR-Abl that promote these processes independent of extrinsic growth factors. When cells are deprived sufficient growth signals or when oncogenic kinases are inhibited, glucose metabolism decreases and cells activate the self-digestive process of autophagy, which clears damaged organelles and provides degradation products as an alternate fuel to support mitochondrial metabolism. Importantly, loss of growth signals can also lead to apoptosis mediated through Bcl-2 family proteins, and Bcl-2 has been reported to interfere with autophagy, potentially disrupting a key nutrient source just as glucose uptake becomes limiting. Since autophagy may support survival or lead to death depending on context, the role of this pathway in apoptosis-competent growth factor deprived cells remains unclear.
In this thesis, I examine the interactions of autophagy with Bcl-2 family proteins and apoptosis upon inhibition of growth signals in hematopoietic cells. In contrast to other studies, I found autophagy was rapidly induced in growth factor deprived cells regardless of Bcl-2 or Bcl-xL expression, and this led to increased production of fatty acids and amino acids for metabolism. While these data suggested autophagy may play a key role to support metabolism of growth factor deprived cells, provision of exogenous pyruvate or lipids as alternate fuel had little affect on cell survival. Instead, I found that autophagy modulated cell stress pathways and Bcl-2 family protein expression in a context specific fashion to impact cell fate.
My results show that autophagy's effect on cell survival is dependent on its level of induction within a cell. I observed that partial suppression of autophagy protects cells from stress and induction of pro-apoptotic Bcl-2 family expression, while complete inhibition of autophagy enhances stress and is pro-apoptotic. In experiments using shRNAi to partially suppress autophagy, I found increased survival upon growth factor deprivation in several different types of cells expressing anti-apoptotic Bcl-2 or Bcl-xL, indicating that autophagy promoted cell death in these instances. Cell death was not autophagic, but apoptotic, and relied on direct Chop-dependent transcriptional induction of the pro-apoptotic Bcl-2 family protein Bim. In contrast, complete acute disruption of autophagy through conditional Cre-mediated excision of the autophagy-essential gene Atg3 led to p53 phosphorylation, upregulation of p21 and the pro-apoptotic Bcl-2 family protein Puma, and rapid cell death of cells the presence or absence of growth factor. Importantly, transformed BCR-Abl-expressing cells had low basal levels of autophagy but were highly dependent on this process. Deletion of Atg3 or treatment with chemical autophagy inhibitors led to rapid apoptosis, and BCR-Abl expressing cells were unable to form leukemia in mice in without autophagy. Together, my data demonstrate a dual role for autophagy in cell survival or cell death and suggest that the level of autophagy in a cell is critical in determining its role in apoptosis and cell fate. Ultimately, these results may help to determine future approaches to modulate autophagy in cancer therapy.
Item Open Access Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.(J Immunol, 2011-03-15) Michalek, Ryan D; Gerriets, Valerie A; Jacobs, Sarah R; Macintyre, Andrew N; MacIver, Nancie J; Mason, Emily F; Sullivan, Sarah A; Nichols, Amanda G; Rathmell, Jeffrey CStimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.Item Open Access Editorial overview: Metabolism of T cells: integrating nutrients, signals, and cell fate(CURRENT OPINION IN IMMUNOLOGY, 2017-06) MacIver, Nancie J; Rathmell, Jeffrey CItem Open Access Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.(Proc Natl Acad Sci U S A, 2013-02-05) Kurokawa, Manabu; Ito, Takahiro; Yang, Chih-Sheng; Zhao, Chen; Macintyre, Andrew N; Rizzieri, David A; Rathmell, Jeffrey C; Deininger, Michael W; Reya, Tannishtha; Kornbluth, SallyIncreased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations.Item Open Access Examining Glucose Metabolism in Survival and Proliferation of B Cell Derived Leukemia(2014) Liu, TingyuIt has been long known that many types of cancers have high metabolic requirements and use reprogrammed metabolism to support cellular activities. The first identified metabolic alteration in cancer cells was elevated glucose uptake, glycolysis activity and lactate production even in the presence of oxygen. This metabolic program, termed aerobic glycolysis or the Warburg effect, provides cells with energy as well as biosynthetic substrates to sustain cell survival and rapid cell proliferation. Cancer metabolism is closely linked to genetic mutations and oncogenic signaling pathways, such as PI3K/Akt, cMyc and HIF pathways. These oncogenic signals can direct metabolic reprogramming while changes in metabolic status can regulate activities of these signaling pathways in turn. In addition to glucose, later studies also found utilization of alternate nutrients in cancer cells, including glutamine and lipids. Glutamine is the second major metabolic fuel and can be converted to various substrates to support cell bioenergetics needs and biosynthetic reactions. Usage of metabolic fuels in cancer cells, however, is variable. While certain cancers display addiction to one type of nutrient, others are capable of using multiple nutrients.
The unique metabolic features of cancer cells raise the possibility of targeting metabolism as a novel therapeutic approach for cancer treatment. Using pharmacological inhibitors, previous research has provided corroborating evidence that metabolic stress can impact survival and growth of proliferative cancer cells by regulating cell apoptotic machinery and cell cycle checkpoints. Due to lack of genetic tools and side effects from these inhibitors, however, mechanistic understanding of cell response to metabolic inhibition was limited in these studies. More importantly, how metabolic stress affects cancer progression in a physiological condition has not yet been well investigated. Lastly, current research has not examined metabolic program in indolent cancers and the metabolic requirements and activities in less proliferative cells also remain to be understood.
This work examines nutrients utilization in B cell derived acute and chronic leukemia (B-ALL and B-CLL). B-ALL is an aggressive form of leukemia. Using cell lines and primary patient samples, we found B-ALL cells primarily used glucose through aerobic glycolysis, similar to other proliferative cancer cells. B-ALL cells were also more sensitive to inhibition of glycolysis than normal B cells. Employing an untargeted metabolomics profiling in combination with isotope labeled glucose tracing approach, we show in a B-ALL model that genetic ablation of glucose transporter Glut1 partially reduced glucose uptake, sufficiently hindered anabolic pathways and promoted catabolic metabolism. This metabolic shift led to sharply curtailed B-ALL proliferation in vitro and reduced leukemic burden in vivo. Furthermore, this partial inhibition of glucose metabolism sensitized B-ALL cells to apoptotic stimuli and non-cytotoxic metabolic inhibition significantly enhanced efficacy of a tyrosine kinase inhibitor to eliminate B-ALL cells in vitro and in vivo. Thus, partial inhibition of glucose metabolism can provide a plausible adjuvant therapy to treat cancers that depend on glycolysis for survival and proliferation.
In contrast to B-ALL, B-CLL is an indolent form of cancer. Most B-CLL cells exhibited low glucose metabolic activities that were comparable with normal B cells at resting stage. Similar to chronically stimulated and anergic B cells, these B-CLL cells also failed to upregulate glucose metabolism in response to IgM stimulation. We also observed an altered amino acid and acyl-carnitine profile and increased glutaminase mRNA in B-CLL relative to normal B cells, suggesting the capability of using alternate nutrients such as glutamine in these cells. Finally, we explored the possibility of suppressing mitochondria metabolism to induce B-CLL cell death through inhibition of the nuclear hormone receptor and metabolic regulator ERRalpha. ERRalpha is known to regulate mitochondrial metabolism and was expressed higher in B-CLL than normal B cells. ERRalpha inhibition decreased viability of oncogene transformed pro-B cells, suggesting ERRalpha as a potential target for B-CLL treatment.
Collectively, this work investigates metabolic phenotype in two forms of leukemia derived from B cells. It reveals different metabolic requirements and activities in aggressive and indolent leukemia and explores different approaches to suppress metabolism in these cancers. Findings of this work shed light on how to potentially design metabolic approach to improve cancer treatment.
Item Open Access Glucose metabolism and p53 in leukemia(2011) Mason, Emily FergusonHealthy cells require input from growth factor signaling pathways to maintain cell metabolism and survival. Growth factor deprivation induces a loss of glucose metabolism that contributes to cell death in this context, and we have previously shown that maintenance of glycolysis after growth factor deprivation suppresses the activation of p53 and the induction of the pro-apoptotic protein Puma to prevent cell death. However, it has remained unclear how cell metabolism regulates p53 activation and whether this increased glycolysis promotes cell survival in the face of additional types of cell stress. To examine these questions, we have utilized a system in which stable overexpression of the glucose transporter Glut1 and hexokinase 1 in hematopoietic cells drives growth-factor independent glycolysis. This system allows us to examine the effects of glucose metabolism in the absence of other signaling events activated downstream of growth factor receptors. Here, we demonstrate that elevated glucose metabolism, characteristic of cancer cells, can suppress PKCδ-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ-independent and was not metabolically sensitive. Both stresses required p53 serine 18 phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, demonstrating distinct activation and response pathways for p53 that were differentially regulated by metabolism.
Unlike the growth factor-dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival and often demonstrate dramatically increased rates of glucose uptake and glycolysis, in part to meet the metabolic demands associated with cell proliferation. Given the ability of elevated glucose metabolism to suppress p53 activity in the context of metabolic stress, we examined the effect of increased glucose uptake on leukemogenesis using a mAkt-driven model of leukemia and adoptive transfer experiments. We show here that elevated glucose uptake promoted leukemogenesis in vivo, perhaps through suppression of p53 transcriptional activity. During the process of leukemogenesis, cancerous cells can acquire growth factor independent control over metabolism and survival through expression of oncogenic kinases, such as BCR-Abl. While targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently and further mechanistic understanding regarding these therapies is needed. Kinase inhibition targets the necessary survival signals within cancerous cells and may activate similar cell death pathways to those initiated by growth factor deprivation. As we have demonstrated that loss of metabolism promotes cell death after growth factor withdrawal, we investigated whether cell metabolism played a role in the induction of apoptosis after treatment of BCR-Abl-expressing cells with the tyrosine kinase inhibitor imatinib. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance, while inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild type p53 but had little effect on p53 null cells. Together, these data demonstrate that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibition of glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies.
Item Open Access Glucose Metabolism in CD4+ T cell Subsets Modulates Inflammation and Autoimmunity(2014) Gerriets, ValerieUnderstanding the mechanisms that control T cell function and differentiation is crucial to develop new strategies to modulate immune function and prevent autoimmune and inflammatory disease. The balance between effector (Teff; Th1, Th2 and Th17) and regulatory (Treg) T cells is critical to provide an appropriate, but not excessive, immune response and therapies to induce Treg or inhibit Teff are likely promising treatment strategies. It has recently become clear that T cell metabolism is important in both T cell activation and differentiation. T cells undergo a metabolic reprogramming upon activation and not all differentiated T cell subsets utilize the same metabolic fuels or programs.
These metabolic differences are not trivial, as T cell metabolism is tightly
regulated and dysregulation can lead to cell death or reduced immunity. An
understanding of the metabolic differences between Teff and Treg may lead to a new direction for treating inflammatory diseases by modulating the Teff:Treg balance through metabolic inhibition. Previous studies have shown that Teff express higher levels of the glucose transporter Glut1 than Treg, however the role of Glut1, and importantly, the cell-intrinsic role of glucose metabolism in T cell differentiation and inflammation was not previously examined. The work presented here examines the role of Glut1 in T cell differentiation. We show that effector CD4 T cells were dependent on Glut1 for proliferation and function both in vitro and in vivo. In contrast, Treg were Glut1-independent and capable of suppressing colitis in the absence of Glut1 expression.
Additionally, previous studies have shown broad metabolic differences between Teff and Treg, however the specific metabolic profiles of Teff and Treg are poorly understood. Here, Teff and Treg metabolism is examined to test if dependence on distinct metabolic pathways will allow selective targeting of different T cell populations. We show that pyruvate dehydrogenase kinase 1 (PDHK1) is differentially expressed in the T cell subsets and inhibition of PDHK1 selectively suppresses Th17 and promotes Treg differentiation and function. Because Teff and Treg have distinct metabolic profiles, we hypothesized that the Treg-specific transcription factor FoxP3 may drive the Treg oxidative metabolic program. We therefore examined the role of FoxP3 in T cell metabolism and determined that FoxP3 promotes glucose and lipid oxidation and suppresses glycolytic metabolism. Importantly, we show that promoting glycolysis with transgenic expression of Glut1 inhibits Treg suppressive capacity. Together, these data suggest that FoxP3 drives an oxidative metabolic program that is critical to Treg function. Overall, this work examines the metabolic phenotypes and regulation of Teff and Treg and potential metabolic targets that could be used to treat autoimmune and inflammatory disease.
Item Open Access Glutaminase Modulates T Cell Metabolism and Function in Inflammation and Cancer(2018) Johnson, Marc ODuring the immune response, helper T cells must proliferate and upregulate key metabolic programs including glucose and glutamine uptake. Metabolic reprogramming is imperative for appropriate T cell responses, as inhibition of glucose or glutamine uptake hinders T cell effector responses. Glutamine and glutaminolysis use in cancer cells has partially been explored. However, the role of glutamine and its downstream metabolites is incomplete and unclear in T cells. The first step of glutamine metabolism is conversion to glutamate via the hydrolase enzyme glutaminase (GLS). To target glutaminolysis, two different methods were employed: 1) genetic knockout of GLS using a CRE-recombinase system specific for CD4/CD8 T cells, and 2) pharmacological inhibition of GLS via the potent and specific small molecular CB839. These two models of glutaminase insufficiency were used as a tool to target glutamine metabolism during T cell activation and differentiation both in vitro and in vivo.
GLS-deficient T cells had decreased activation at early time points compared to control. Over several days, these GLS-deficient T cells differentiated preferentially to Th1-like effector cells. This was reliant on increased glucose carbons incorporating into Tri-Carboxylic Acid (TCA) metabolites. This increased effector response in vitro occurred in both CD4+ T helper cells and CD8+ cells (Cytotoxic lymphocytes, or CTLs). Differentiation of CD4+ T cells to Th1 or Th17 subsets showed decreased Th17 differentiation and cytokine production, while Th1 effector responses were increased. This increased Th1 function was dependent on IL-2 signaling and mTORC1, as reducing IL-2 or inhibiting mTORC1 with rapamycin prevented GLS inhibition-induced Th1 effector function. Th17 cells, meanwhile, were inhibited by changes in reactive oxygen species, and recovery of Th17 function was achieved with n-acetylcysteine treatment.
T cells lacking GLS were unable to induce inflammation in a mouse model of Graft vs Host disease, an inflammatory bowel disease model, or in an airway inflammatory model. Importantly, Chimeric Antigen Receptor (CAR) T cells made from GLS knockout cells were unable to maintain B cell aplasia in recipient mice. Contrary to this, temporary inhibition of GLS via small-molecule inhibition increased B cell killing in vitro and enhanced T cell persistence in both the B cell aplasia and in a vaccinia virus recall response. These results indicate a balance, where permanent deficiency of GLS is detrimental to T cell responses, but acute inhibition can actually promote T effector responses and survival. Overall, this work aims to understand how perturbations in glutamine metabolism in T cells affects differentiation and function and the role of glutaminolysis and improve therapies for inflammatory disease and cancer.
Item Open Access Leptin metabolically licenses T cells for activation to link nutrition and immunity.(J Immunol, 2014-01-01) Saucillo, Donte C; Gerriets, Valerie A; Sheng, John; Rathmell, Jeffrey C; Maciver, Nancie JImmune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.Item Open Access Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.(J Clin Invest, 2015-01) Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey CActivation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.Item Open Access Metabolic regulation of T lymphocytes.(Annu Rev Immunol, 2013) MacIver, Nancie J; Michalek, Ryan D; Rathmell, Jeffrey CT cell activation leads to dramatic shifts in cell metabolism to protect against pathogens and to orchestrate the action of other immune cells. Quiescent T cells require predominantly ATP-generating processes, whereas proliferating effector T cells require high metabolic flux through growth-promoting pathways. Further, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. Pathways that control immune cell function and metabolism are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell functions. As a result of these findings, cell metabolism is now appreciated as a key regulator of T cell function specification and fate. This review discusses the role of cellular metabolism in T cell development, activation, differentiation, and function to highlight the clinical relevance and opportunities for therapeutic interventions that may be used to disrupt immune pathogenesis.Item Open Access Metabolism Regulates the Fate and Function of T Lymphocytes(2016) Kishton, Rigel JosephProper balancing of the activities of metabolic pathways to meet the challenge of providing necessary products for biosynthetic and energy demands of the cell is a key requirement for maintaining cell viability and allowing for cell proliferation. Cell metabolism has been found to play a crucial role in numerous cell settings, including in the cells of the immune system, where a successful immune response requires rapid proliferation and successful clearance of dangerous pathogens followed by resolution of the immune response. Additionally, it is now well known that cell metabolism is markedly altered from normal cells in the setting of cancer, where tumor cells rapidly and persistently proliferate. In both settings, alterations to the metabolic profile of the cells play important roles in promoting cell proliferation and survival.
It has long been known that many types of tumor cells and actively proliferating immune cells adopt a metabolic phenotype of aerobic glycolysis, whereby the cell, even under normoxic conditions, imports large amounts of glucose and fluxes it through the glycolytic pathway and produces lactate. However, the metabolic programs utilized by various immune cell subsets have only recently begun to be explored in detail, and the metabolic features and pathways influencing cell metabolism in tumor cells in vivo have not been studied in detail. The work presented here examines the role of metabolism in regulating the function of an important subset of the immune system, the regulatory T cell (Treg) and the role and regulation of metabolism in the context of malignant T cell acute lymphoblastic leukemia (T-ALL). We show that Treg cells, in order to properly function to suppress auto-inflammatory disease, adopt a metabolic program that is characterized by oxidative metabolism and active suppression of anabolic signaling and metabolic pathways. We found that the transcription factor FoxP3, which is highly expressed in Treg cells, drives this phenotype. Perturbing the metabolic phenotype of Treg cells by enforcing increased glycolysis or driving proliferation and anabolic signaling through inflammatory signaling pathways results in a reduction in suppressive function of Tregs.
In our studies focused on the metabolism of T-ALL, we observed that while T-ALL cells use and require aerobic glycolysis, the glycolytic metabolism of T-ALL is restrained compared to that of an antigen activated T cell. The metabolism of T-ALL is instead balanced, with mitochondrial metabolism also being increased. We observed that the pro-anabolic growth mTORC1 signaling pathway was limited in primary T-ALL cells as a result of AMPK pathway activity. AMPK pathway signaling was elevated as a result of oncogene induced metabolic stress. AMPK played a key role in the regulation of T-ALL cell metabolism, as genetic deletion of AMPK in an in vivo murine model of T-ALL resulted in increased glycolysis and anabolic metabolism, yet paradoxically increased cell death and increased mouse survival time. AMPK acts to promote mitochondrial oxidative metabolism in T-ALL through the regulation of Complex I activity, and loss of AMPK reduced mitochondrial oxidative metabolism and resulted in increased metabolic stress. Confirming a role for mitochondrial metabolism in T-ALL, we observed that the direct pharmacological inhibition of Complex I also resulted in a rapid loss of T-ALL cell viability in vitro and in vivo. Taken together, this work establishes an important role for AMPK to both balance the metabolic pathways utilized by T-ALL to allow for cell proliferation and to also promote tumor cell viability by controlling metabolic stress.
Overall, this work demonstrates the importance of the proper coupling of metabolic pathway activity with the function needs of particular types of immune cells. We show that Treg cells, which mainly act to keep immune responses well regulated, adopt a metabolic program where glycolytic metabolism is actively repressed, while oxidative metabolism is promoted. In the setting of malignant T-ALL cells, metabolic activity is surprisingly balanced, with both glycolysis and mitochondrial oxidative metabolism being utilized. In both cases, altering the metabolic balance towards glycolytic metabolism results in negative outcomes for the cell, with decreased Treg functionality and increased metabolic stress in T-ALL. In both cases, this work has generated a new understanding of how metabolism couples to immune cell function, and may allow for selective targeting of immune cell subsets by the specific targeting of metabolic pathways.
Item Open Access The liver kinase B1 is a central regulator of T cell development, activation, and metabolism.(J Immunol, 2011-10-15) MacIver, Nancie J; Blagih, Julianna; Saucillo, Donte C; Tonelli, Luciana; Griss, Takla; Rathmell, Jeffrey C; Jones, Russell GT cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.Item Open Access The Role of Glucose Metabolism in T Cell Stimulation and Homeostasis(2009) Jacobs, Sarah RuthThe role of two cell extrinsic signals, T cell receptor (TCR) ligation and interleukin-7, in promoting glucose uptake and survival of T lymphocytes is examined in this work. Both of these signals are capable of regulating the uptake and fate of glucose, but the requirement of this regulation for T cell homeostasis and functionality remains unclear. To examine the role of TCR mediated increases of glucose metabolism and the signals involved, primary murine T cells were activated in vitro and the role and regulation of glucose uptake was examined. We show that glucose uptake is limiting in T cell activation and that CD28 costimulation is required for maximal glucose uptake following TCR stimulation by upregulating expression and promoting the cell surface trafficking of the glucose transporter Glut1. Regulation of T cell glucose uptake and Glut1 was critical, as low glucose prevented appropriate T cell responses. Additionally, transgenic expression of Glut1 augmented T cell activation, and led to accumulation of readily activated memory-phenotype T cells with signs of autoimmunity in aged mice. To further examine the regulation of glucose uptake, we analyzed CD28 activation of Akt, which appeared necessary for maximal glucose uptake of stimulated cells and which we have shown can promote Glut1 cell surface trafficking. Consistent with a role for Akt in Glut1 trafficking, transgenic expression of constitutively active Akt (mAkt) increased glucose uptake of resting T cells, but did not alter Glut1 protein levels. Therefore, CD28 appeared to promote Akt-independent upregulation of Glut1 protein and Akt-dependent Glut1 cell surface trafficking. In support of this model, co-expression of Glut1 and mAkt transgenes resulted in a synergistic increase in glucose uptake and accumulation of activated T cells in vivo that were largely independent of CD28. Induction of Glut1 protein and Akt regulation of Glut1 trafficking are therefore separable functions of CD28 costimulation that cooperate to promote glucose metabolism necessary for T cell activation and proliferation.
Glucose uptake is dramatically increased in response to TCR and costimulation signaling, however, glucose uptake must be maintained at a low level in naive T cells to promote survival and homeostasis. Interleukin-7 (IL-7) plays a central role in maintaining naive T cell homeostasis, and mediates this effect in vivo at least in part through control of homeostatic proliferation and inhibition of apoptosis. IL-7 can promote glucose uptake and glycolysis in vitro and may also promote glucose metabolism in vivo to maintain T cell survival. To determine if IL-7 regulates T cell metabolism in vivo, we generated a transgenic model for conditional IL-7 receptor (IL 7R) expression on IL-7R-/- T cells. T cells in this model developed normally and, consistent with previous work, deletion of the IL-7R transgene in vivo led to cell death even in an otherwise normal lymphoid compartment. Importantly, in vivo deletion of IL 7R also led to decreased cell size and glycolytic flux. However, glucose uptake was not altered following deletion of the IL-7R indicating that while not essential for glucose uptake, IL-7 is required for maintenance of glycolysis. These data are the first to identify a signal required in vivo to regulate lymphocyte metabolism and demonstrate that in addition to its well-defined roles in homeostatic proliferation and cell survival, IL-7 plays a key and non-redundant role to maintain T cell glycolysis. Together, these data concerning the role of TCR, costimulation, and IL-7 in the regulation of glucose uptake and metabolism exemplify the importance of cell extrinsic signals and the regulation of glucose utilization.