Browsing by Author "Ratmann, Oliver"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A dimensionless number for understanding the evolutionary dynamics of antigenically variable RNA viruses.(Proc Biol Sci, 2011-12-22) Koelle, Katia; Ratmann, Oliver; Rasmussen, David A; Pasour, Virginia; Mattingly, JonathanAntigenically variable RNA viruses are significant contributors to the burden of infectious disease worldwide. One reason for their ubiquity is their ability to escape herd immunity through rapid antigenic evolution and thereby to reinfect previously infected hosts. However, the ways in which these viruses evolve antigenically are highly diverse. Some have only limited diversity in the long-run, with every emergence of a new antigenic variant coupled with a replacement of the older variant. Other viruses rapidly accumulate antigenic diversity over time. Others still exhibit dynamics that can be considered evolutionary intermediates between these two extremes. Here, we present a theoretical framework that aims to understand these differences in evolutionary patterns by considering a virus's epidemiological dynamics in a given host population. Our framework, based on a dimensionless number, probabilistically anticipates patterns of viral antigenic diversification and thereby quantifies a virus's evolutionary potential. It is therefore similar in spirit to the basic reproduction number, the well-known dimensionless number which quantifies a pathogen's reproductive potential. We further outline how our theoretical framework can be applied to empirical viral systems, using influenza A/H3N2 as a case study. We end with predictions of our framework and work that remains to be done to further integrate viral evolutionary dynamics with disease ecology.Item Open Access Cultural conformity generates extremely stable traditions in bird song.(Nature communications, 2018-06) Lachlan, Robert F; Ratmann, Oliver; Nowicki, StephenCultural traditions have been observed in a wide variety of animal species. It remains unclear, however, what is required for social learning to give rise to stable traditions: what level of precision and what learning strategies are required. We address these questions by fitting models of cultural evolution to learned bird song. We recorded 615 swamp sparrow (Melospiza georgiana) song repertoires, and compared syllable frequency distributions to the output of individual-based simulations. We find that syllables are learned with an estimated error rate of 1.85% and with a conformist bias in learning. This bias is consistent with a simple mechanism of overproduction and selective attrition. Finally, we estimate that syllable types could frequently persist for more than 500 years. Our results demonstrate conformist bias in natural animal behaviour and show that this, along with moderately precise learning, may support traditions whose stability rivals those of humans.Item Open Access Inference for nonlinear epidemiological models using genealogies and time series.(PLoS Comput Biol, 2011-08) Rasmussen, David A; Ratmann, Oliver; Koelle, KatiaPhylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic, nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.