Browsing by Author "Rickard, Ashlyn G"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A Novel Preclinical Murine Model to Monitor Inflammatory Breast Cancer Tumor Growth and Lymphovascular Invasion.(Cancers, 2023-04) Rickard, Ashlyn G; Sannareddy, Dorababu S; Bennion, Alexandra; Patel, Pranalee; Sauer, Scott J; Rouse, Douglas C; Bouchal, Samantha; Liu, Harrison; Dewhirst, Mark W; Palmer, Gregory M; Devi, Gayathri RInflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0-140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models.Item Open Access Cherenkov emissions for studying tumor changes during radiation therapy: An exploratory study in domesticated dogs with naturally-occurring cancer.(PloS one, 2020-01) Rickard, Ashlyn G; Yoshikawa, Hiroto; Palmer, Gregory M; Liu, Harrison Q; Dewhirst, Mark W; Nolan, Michael W; Zhang, XiaofengPurpose
Real-time monitoring of physiological changes of tumor tissue during radiation therapy (RT) could improve therapeutic efficacy and predict therapeutic outcomes. Cherenkov radiation is a normal byproduct of radiation deposited in tissue. Previous studies in rat tumors have confirmed a correlation between Cherenkov emission spectra and optical measurements of blood-oxygen saturation based on the tissue absorption coefficients. The purpose of this study is to determine if it is feasible to image Cherenkov emissions during radiation therapy in larger human-sized tumors of pet dogs with cancer. We also wished to validate the prior work in rats, to determine if Cherenkov emissions have the potential to act an indicator of blood-oxygen saturation or water-content changes in the tumor tissue-both of which have been correlated with patient prognosis.Methods
A DoseOptics camera, built to image the low-intensity emission of Cherenkov radiation, was used to measure Cherenkov intensities in a cohort of cancer-bearing pet dogs during clinical irradiation. Tumor type and location varied, as did the radiation fractionation scheme and beam arrangement, each planned according to institutional standard-of-care. Unmodulated radiation was delivered using multiple 6 MV X-ray beams from a clinical linear accelerator. Each dog was treated with a minimum of 16 Gy total, in ≥3 fractions. Each fraction was split into at least three subfractions per gantry angle. During each subfraction, Cherenkov emissions were imaged.Results
We documented significant intra-subfraction differences between the Cherenkov intensities for normal tissue, whole-tumor tissue, tissue at the edge of the tumor and tissue at the center of the tumor (p<0.05). Additionally, intra-subfraction changes suggest that Cherenkov emissions may have captured fluctuating absorption properties within the tumor.Conclusion
Here we demonstrate that it is possible to obtain Cherenkov emissions from canine cancers within a fraction of radiotherapy. The entire optical spectrum was obtained which includes the window for imaging changes in water and hemoglobin saturation. This lends credence to the goal of using this method during radiotherapy in human patients and client-owned pets.Item Open Access Dual-emissive, oxygen-sensing boron nanoparticles quantify oxygen consumption rate in breast cancer cells.(Journal of biomedical optics, 2020-11) Rickard, Ashlyn G; Zhuang, Meng; DeRosa, Christopher A; Zhang, Xiaojie; Dewhirst, Mark W; Fraser, Cassandra L; Palmer, Gregory MSignificance
Decreasing the oxygen consumption rate (OCR) of tumor cells is a powerful method for ameliorating tumor hypoxia. However, quantifying the change in OCR is challenging in complex experimental systems.Aim
We present a method for quantifying the OCR of two tumor cell lines using oxygen-sensitive dual-emissive boron nanoparticles (BNPs). We hypothesize that our BNP results are equivalent to the standard Seahorse assay.Approach
We quantified the spectral emissions of the BNP and accounted for external oxygen diffusion to quantify OCR over 24 h. The BNP-computed OCR of two breast cancer cell lines, E0771 and 4T07, were compared with their respective Seahorse assays. Both cell lines were also irradiated to quantify radiation-induced changes in the OCR.Results
Using a Bland-Altman analysis, our BNPs OCR was equivalent to the standard Seahorse assay. Moreover, in an additional experiment in which we irradiated the cells at their 50% survival fraction, the BNPs were sensitive enough to quantify 24% reduction in OCR after irradiation.Conclusions
Our results conclude that the BNPs are a viable alternative to the Seahorse assay for quantifying the OCR in cells. The Bland-Altman analysis showed that these two methods result in equivalent OCR measurements. Future studies will extend the OCR measurements to complex systems including 3D cultures and in vivo models, in which OCR measurements cannot currently be made.