Browsing by Author "Rivera, Grecia O"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion.(Res Sq, 2022-04-07) Giroux, Nicholas S; Ding, Shengli; McClain, Micah T; Burke, Thomas W; Petzold, Elizabeth; Chung, Hong A; Rivera, Grecia O; Wang, Ergang; Xi, Rui; Bose, Shree; Rotstein, Tomer; Nicholson, Bradly P; Chen, Tianyi; Henao, Ricardo; Sempowski, Gregory D; Denny, Thomas N; De Ussel, Maria Iglesias; Satterwhite, Lisa L; Ko, Emily R; Ginsburg, Geoffrey S; Kraft, Bryan D; Tsalik, Ephraim L; Shen, Xiling; Woods, ChristopherSARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.Item Open Access Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion.(Scientific reports, 2022-07-09) Giroux, Nicholas S; Ding, Shengli; McClain, Micah T; Burke, Thomas W; Petzold, Elizabeth; Chung, Hong A; Rivera, Grecia O; Wang, Ergang; Xi, Rui; Bose, Shree; Rotstein, Tomer; Nicholson, Bradly P; Chen, Tianyi; Henao, Ricardo; Sempowski, Gregory D; Denny, Thomas N; De Ussel, Maria Iglesias; Satterwhite, Lisa L; Ko, Emily R; Ginsburg, Geoffrey S; Kraft, Bryan D; Tsalik, Ephraim L; Shen, Xiling; Woods, Christopher WSARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.Item Open Access Mucosal Associated Invariant T (MAIT) Cell Responses Differ by Sex in COVID-19.(Med (New York, N.Y.), 2021-04-13) Yu, Chen; Littleton, Sejiro; Giroux, Nicholas S; Mathew, Rose; Ding, Shengli; Kalnitsky, Joan; Yang, Yuchen; Petzold, Elizabeth; Chung, Hong A; Rivera, Grecia O; Rotstein, Tomer; Xi, Rui; Ko, Emily R; Tsalik, Ephraim L; Sempowski, Gregory D; Denny, Thomas N; Burke, Thomas W; McClain, Micah T; Woods, Christopher W; Shen, Xiling; Saban, Daniel RSexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, yet the mechanisms governing this disparity remain incompletely understood. We carried out sex-balanced sampling of peripheral blood mononuclear cells from confirmed COVID-19 inpatients and outpatients, uninfected close contacts, and healthy controls for 36-color flow cytometry and single cell RNA-sequencing. Our results revealed a pronounced reduction of circulating mucosal associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets implicate that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, female MAIT cells possessed an immunologically active gene signature, whereas male counterparts were pro-apoptotic. Collectively, our findings uncover a female-specific protective MAIT profile, potentially shedding light on reduced COVID-19 susceptibility in females.Item Open Access Patient-derived micro-organospheres enable clinical precision oncology.(Cell stem cell, 2022-06) Ding, Shengli; Hsu, Carolyn; Wang, Zhaohui; Natesh, Naveen R; Millen, Rosemary; Negrete, Marcos; Giroux, Nicholas; Rivera, Grecia O; Dohlman, Anders; Bose, Shree; Rotstein, Tomer; Spiller, Kassandra; Yeung, Athena; Sun, Zhiguo; Jiang, Chongming; Xi, Rui; Wilkin, Benjamin; Randon, Peggy M; Williamson, Ian; Nelson, Daniel A; Delubac, Daniel; Oh, Sehwa; Rupprecht, Gabrielle; Isaacs, James; Jia, Jingquan; Chen, Chao; Shen, John Paul; Kopetz, Scott; McCall, Shannon; Smith, Amber; Gjorevski, Nikolche; Walz, Antje-Christine; Antonia, Scott; Marrer-Berger, Estelle; Clevers, Hans; Hsu, David; Shen, XilingPatient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.Item Open Access Rapid tissue prototyping with micro-organospheres.(Stem cell reports, 2022-09) Wang, Zhaohui; Boretto, Matteo; Millen, Rosemary; Natesh, Naveen; Reckzeh, Elena S; Hsu, Carolyn; Negrete, Marcos; Yao, Haipei; Quayle, William; Heaton, Brook E; Harding, Alfred T; Bose, Shree; Driehuis, Else; Beumer, Joep; Rivera, Grecia O; van Ineveld, Ravian L; Gex, Donald; DeVilla, Jessica; Wang, Daisong; Puschhof, Jens; Geurts, Maarten H; Yeung, Athena; Hamele, Cait; Smith, Amber; Bankaitis, Eric; Xiang, Kun; Ding, Shengli; Nelson, Daniel; Delubac, Daniel; Rios, Anne; Abi-Hachem, Ralph; Jang, David; Goldstein, Bradley J; Glass, Carolyn; Heaton, Nicholas S; Hsu, David; Clevers, Hans; Shen, XilingIn vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.