Browsing by Author "Rodrigues, MRD"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Artificial intelligence for art investigation: Meeting the challenge of separating x-ray images of the Ghent Altarpiece.(Science advances, 2019-08-30) Sabetsarvestani, Z; Sober, B; Higgitt, C; Daubechies, I; Rodrigues, MRDX-ray images of polyptych wings, or other artworks painted on both sides of their support, contain in one image content from both paintings, making them difficult for experts to "read." To improve the utility of these x-ray images in studying these artworks, it is desirable to separate the content into two images, each pertaining to only one side. This is a difficult task for which previous approaches have been only partially successful. Deep neural network algorithms have recently achieved remarkable progress in a wide range of image analysis and other challenging tasks. We, therefore, propose a new self-supervised approach to this x-ray separation, leveraging an available convolutional neural network architecture; results obtained for details from the Adam and Eve panels of the Ghent Altarpiece spectacularly improve on previous attempts.Item Open Access Communications-inspired projection design with application to compressive sensing(SIAM Journal on Imaging Sciences, 2012-12-01) Carson, WR; Chen, M; Rodrigues, MRD; Calderbank, R; Carin, LWe consider the recovery of an underlying signal x ∈ ℂm based on projection measurements of the form y = Mx+w, where y ∈ ℂℓ and w is measurement noise; we are interested in the case ℓ ≪ m. It is assumed that the signal model p(x) is known and that w ~ CN(w; 0,Σw) for known Σ w. The objective is to design a projection matrix M ∈ ℂℓ×m to maximize key information-theoretic quantities with operational significance, including the mutual information between the signal and the projections I(x; y) or the Rényi entropy of the projections hα (y) (Shannon entropy is a special case). By capitalizing on explicit characterizations of the gradients of the information measures with respect to the projection matrix, where we also partially extend the well-known results of Palomar and Verdu ́ from the mutual information to the Rényi entropy domain, we reveal the key operations carried out by the optimal projection designs: mode exposure and mode alignment. Experiments are considered for the case of compressive sensing (CS) applied to imagery. In this context, we provide a demonstration of the performance improvement possible through the application of the novel projection designs in relation to conventional ones, as well as justification for a fast online projection design method with which state-of-the-art adaptive CS signal recovery is achieved. © 2012 Society for Industrial and Applied Mathematics.