Browsing by Author "Rogers, Ursula"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Defining the Need for Causal Inference to Understand the Impact of Social Determinants of Health: A Primer on Behalf of the Consortium for the Holistic Assessment of Risk in Transplantation (CHART).(Annals of surgery open : perspectives of surgical history, education, and clinical approaches, 2023-12) Bhavsar, Nrupen A; Patzer, Rachel E; Taber, David J; Ross-Driscoll, Katie; Deierhoi Reed, Rhiannon; Caicedo-Ramirez, Juan C; Gordon, Elisa J; Matsouaka, Roland A; Rogers, Ursula; Webster, Wendy; Adams, Andrew; Kirk, Allan D; McElroy, Lisa MObjective
This study aims to introduce key concepts and methods that inform the design of studies that seek to quantify the causal effect of social determinants of health (SDOH) on access to and outcomes following organ transplant.Background
The causal pathways between SDOH and transplant outcomes are poorly understood. This is partially due to the unstandardized and incomplete capture of the complex interactions between patients, their neighborhood environments, the tertiary care system, and structural factors that impact access and outcomes. Designing studies to quantify the causal impact of these factors on transplant access and outcomes requires an understanding of the fundamental concepts of causal inference.Methods
We present an overview of fundamental concepts in causal inference, including the potential outcomes framework and direct acyclic graphs. We discuss how to conceptualize SDOH in a causal framework and provide applied examples to illustrate how bias is introduced.Results
There is a need for direct measures of SDOH, increased measurement of latent and mediating variables, and multi-level frameworks for research that examine health inequities across multiple health systems to generalize results. We illustrate that biases can arise due to socioeconomic status, race/ethnicity, and incongruencies in language between the patient and clinician.Conclusions
Progress towards an equitable transplant system requires establishing causal pathways between psychosocial risk factors, access, and outcomes. This is predicated on accurate and precise quantification of social risk, best facilitated by improved organization of health system data and multicenter efforts to collect and learn from it in ways relevant to specialties and service lines.Item Open Access Machine learning functional impairment classification with electronic health record data.(Journal of the American Geriatrics Society, 2023-09) Pavon, Juliessa M; Previll, Laura; Woo, Myung; Henao, Ricardo; Solomon, Mary; Rogers, Ursula; Olson, Andrew; Fischer, Jonathan; Leo, Christopher; Fillenbaum, Gerda; Hoenig, Helen; Casarett, DavidBackground
Poor functional status is a key marker of morbidity, yet is not routinely captured in clinical encounters. We developed and evaluated the accuracy of a machine learning algorithm that leveraged electronic health record (EHR) data to provide a scalable process for identification of functional impairment.Methods
We identified a cohort of patients with an electronically captured screening measure of functional status (Older Americans Resources and Services ADL/IADL) between 2018 and 2020 (N = 6484). Patients were classified using unsupervised learning K means and t-distributed Stochastic Neighbor Embedding into normal function (NF), mild to moderate functional impairment (MFI), and severe functional impairment (SFI) states. Using 11 EHR clinical variable domains (832 variable input features), we trained an Extreme Gradient Boosting supervised machine learning algorithm to distinguish functional status states, and measured prediction accuracies. Data were randomly split into training (80%) and test (20%) sets. The SHapley Additive Explanations (SHAP) feature importance analysis was used to list the EHR features in rank order of their contribution to the outcome.Results
Median age was 75.3 years, 62% female, 60% White. Patients were classified as 53% NF (n = 3453), 30% MFI (n = 1947), and 17% SFI (n = 1084). Summary of model performance for identifying functional status state (NF, MFI, SFI) was AUROC (area under the receiving operating characteristic curve) 0.92, 0.89, and 0.87, respectively. Age, falls, hospitalization, home health use, labs (e.g., albumin), comorbidities (e.g., dementia, heart failure, chronic kidney disease, chronic pain), and social determinants of health (e.g., alcohol use) were highly ranked features in predicting functional status states.Conclusion
A machine learning algorithm run on EHR clinical data has potential utility for differentiating functional status in the clinical setting. Through further validation and refinement, such algorithms can complement traditional screening methods and result in a population-based strategy for identifying patients with poor functional status who need additional health resources.