Browsing by Author "Ross, Leanna M"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Demographic, Clinical, and Psychosocial Predictors of Exercise Adherence: The STRRIDE Trials.(Translational journal of the American College of Sports Medicine, 2023-01) Collins, Katherine A; Huffman, Kim M; Wolever, Ruth Q; Smith, Patrick J; Ross, Leanna M; Siegler, Ilene C; Jakicic, John M; Costa, Paul T; Kraus, William EPurpose
To identify baseline demographic, clinical, and psychosocial predictors of exercise intervention adherence in the Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) trials.Methods
A total of 947 adults with dyslipidemia or prediabetes were enrolled into an inactive control group or one of ten exercise interventions with doses of 10-23 kcal/kg/week, intensities of 40-80% of peak oxygen consumption, and training for 6-8-months. Two groups included resistance training. Mean percent aerobic and resistance adherence were calculated as the amount completed divided by the prescribed weekly minutes or total sets of exercise times 100, respectively. Thirty-eight clinical, demographic, and psychosocial measures were considered for three separate models: 1) clinical + demographic factors, 2) psychosocial factors, and 3) all measures. A backward bootstrapped variable selection algorithm and multiple regressions were performed for each model.Results
In the clinical and demographic measures model (n=947), variables explained 16.7% of the variance in adherence (p<0.001); lesser fasting glucose explained the greatest amount of variance (partial R2 = 3.2%). In the psychosocial factors model (n=561), variables explained 19.3% of the variance in adherence (p<0.001); greater 36-Item Short Form Health Survey (SF-36) physical component score explained the greatest amount of variance (partial R2 = 8.7%). In the model with all clinical, demographic, and psychosocial measures (n=561), variables explained 22.1% of the variance (p<0.001); greater SF-36 physical component score explained the greatest amount of variance (partial R2 = 8.9%). SF-36 physical component score was the only variable to account for >5% of the variance in adherence in any of the models.Conclusions
Baseline demographic, clinical, and psychosocial variables explain approximately 22% of the variance in exercise adherence. The limited variance explained suggests future research should investigate additional measures to better identify participants who are at risk for poor exercise intervention adherence.Item Open Access Determinants of Dropout from and Variation in Adherence to an Exercise Intervention: The STRRIDE Randomized Trials.(Translational journal of the American College of Sports Medicine, 2022-01) Collins, Katherine A; Huffman, Kim M; Wolever, Ruth Q; Smith, Patrick J; Siegler, Ilene C; Ross, Leanna M; Hauser, Elizabeth R; Jiang, Rong; Jakicic, John M; Costa, Paul T; Kraus, William EPurpose
This study aimed to characterize the timing and self-reported determinants of exercise dropout among sedentary adults with overweight or obesity. We also sought to explore variations in adherence among individuals who completed a 6- to 8-month structured exercise intervention.Methods
A total of 947 adults with dyslipidemia [STRRIDE I, STRRIDE AT/RT] or prediabetes [STRRIDE-PD] were enrolled to either control or to one of 10 exercise interventions, ranging from doses of 8-23 kcal/kg/week; intensities of 50%-75% V̇O2 peak; and durations of 6-8 months. Two groups included resistance training and one included dietary intervention (7% weight loss goal). Dropout was defined as an individual who withdrew from the study due a variety of determinants. Timing of intervention dropout was defined as the last session attended and categorized into phases. Exercise training adherence was calculated by dividing weekly minutes or total sets of exercise completed by weekly minutes or total sets of exercise prescribed. General linear models were used to characterize the associations between timing of dropout and determinant category.Results
Compared to exercise intervention completers (n=652), participants who dropped out (n=295) were on average non-white (98% vs. 80%, p<0.01), had higher body mass index (31.0 kg/m2 vs. 30.2 kg/m2; p<0.01), and were less fit at baseline (25.0 mg/kg/min vs. 26.7 ml/kg/min, p<0.01). Of those who dropped out, 67% did so prior to the start of or while ramping up to the prescribed exercise volume and intensity. The most commonly reported reason for dropout was lack of time (40%). Notably, among individuals who completed the ramp training period, subsequent exercise intervention adherence did not waiver over the ensuing 6-8 months of training.Conclusion
These findings are some of the first to delineate associations between the timing of dropout and dropout determinants, providing guidance to future exercise interventions to better support individuals at-risk for dropout.Item Open Access Race and sex differences in dropout from the STRRIDE trials.(Frontiers in sports and active living, 2023-01) Collins, Katherine A; Huffman, Kim M; Wolever, Ruth Q; Smith, Patrick J; Siegler, Ilene C; Ross, Leanna M; Jakicic, John M; Costa, Paul T; Kraus, William EPurpose
To determine if race and sex differences exist in determinants and timing of dropout among individuals enrolled in an exercise and/or caloric restriction intervention.Methods
A total of 947 adults with dyslipidemia (STRRIDE I, STRRIDE AT/RT) or prediabetes (STRRIDE-PD) were randomized to either inactive control or to 1 of 10 exercise interventions, ranging from doses of 8-23 kcal/kg/week, intensities of 50%-75% V˙O2 peak, and durations of 6-8 months. Two groups included resistance training, and one included a dietary intervention (7% weight loss goal). Dropout was defined as an individual withdrawn from the study, with the reasons for dropout aggregated into determinant categories. Timing of dropout was defined as the last session attended and aggregated into phases (i.e., "ramp" period to allow gradual adaptation to exercise prescription). Utilizing descriptive statistics, percentages were generated according to categories of determinants and timing of dropout to describe the proportion of individuals who fell within each category.Results
Black men and women were more likely to be lost to follow-up (Black men: 31.3% and Black women: 19.6%), or dropout due to work responsibilities (15.6% and 12.5%), "change of mind" (12.5% and 8.9%), transportation issues (6.3% and 3.6%), or reported lack of motivation (6.3% and 3.6%). Women in general noted lack of time more often than men as a reason for dropout (White women: 22.4% and Black women: 22.1%). Regardless of race and sex, most participants dropped out during the ramp period of the exercise intervention; with Black women (50%) and White men (37.1%) having the highest dropout rate during this period.Conclusion
These findings emphasize the importance of targeted retention strategies when aiming to address race and sex differences that exist in determinants and timing of dropout among individuals enrolled in an exercise and/or caloric restriction intervention.Item Open Access Remotely Supervised Weight Loss and Exercise Training to Improve Rheumatoid Arthritis Cardiovascular Risk: Rationale and Design of the Supervised Weight Loss Plus Exercise Training-Rheumatoid Arthritis Trial.(ACR open rheumatology, 2023-05) Andonian, BrianJ; Ross, Leanna M; Zidek, Alyssa M; Fos, Liezl B; Piner, Lucy W; Johnson, Johanna L; Belski, Kelsey B; Counts, Julie D; Pieper, Carl F; Siegler, Ilene C; Bales, Connie W; Porter Starr, Kathryn N; Kraus, William E; Huffman, Kim MPatients with rheumatoid arthritis (RA) remain at an increased risk for cardiovascular disease (CVD) and mortality. RA CVD results from a combination of traditional risk factors and RA-related systemic inflammation. One hypothetical means of improving overall RA CVD risk is through reduction of excess body weight and increased physical activity. Together, weight loss and physical activity can improve traditional cardiometabolic health through fat mass loss, while also improving skeletal muscle health. Additionally, disease-related CVD risk may improve as both fat mass loss and exercise reduce systemic inflammation. To explore this hypothesis, 26 older persons with RA and overweight/obesity will be randomized to 16 weeks of a usual care control arm or to a remotely Supervised Weight Loss Plus Exercise Training (SWET) program. A caloric restriction diet (targeting 7% weight loss) will occur via a dietitian-led intervention, with weekly weigh-ins and group support sessions. Exercise training will consist of both aerobic training (150 minutes/week moderate-to-vigorous exercise) and resistance training (twice weekly). The SWET remote program will be delivered via a combination of video conference, the study YouTube channel, and study mobile applications. The primary cardiometabolic outcome is the metabolic syndrome Z score, calculated from blood pressure, waist circumference, high-density lipoprotein cholesterol, triglycerides, and glucose. RA-specific CVD risk will be assessed with measures of systemic inflammation, disease activity, patient-reported outcomes, and immune cell function. The SWET-RA trial will be the first to assess whether a remotely supervised, combined lifestyle intervention improves cardiometabolic health in an at-risk population of older individuals with RA and overweight/obesity.Item Open Access The Relation of Accelerometer-Measured Physical Activity and Serum Uric Acid Using the National Health and Nutrition Survey (NHANES) 2003-2004.(Frontiers in sports and active living, 2021-01) Smith, Isaac D; Ross, Leanna M; Gabaldon, Josi R; Holdgate, Nicholas; Pieper, Carl F; Ning, Tony C; Kraus, William E; Huffman, Kim MObjective: Gout is a crystal-induced inflammatory arthritis caused by elevated uric acid. Physical activity has the potential to reduce serum uric acid (SUA), thus improving the disease burden of gout. In this study, we examined the association of objectively-measured physical activity and SUA. Methods: A cross-sectional study was conducted using survey, laboratory, and accelerometer data from the 2003-2004 National Health and Nutrition Examination Survey (NHANES). SUA concentrations (mg/dL) were obtained during an initial exam, and then physical activity (kCal/day) was measured with 7 days of ActiGraph accelerometry in participants (n = 3,475) representative of the ambulatory, non-institutionalized US civilian population. Regression, including restricted cubic splines, was used to assess the relation of physical activity and SUA in bivariate and adjusted models. Covariates included age, gender, race/ethnicity, alcohol use, body mass index, renal function, and urate-lowering therapy. Results: In the bivariate model, physical activity was correlated with SUA concentrations and included a non-linear component (p < 0.01). In the adjusted model, linear splines were employed with a node at the SUA nadir of 5.37mg/dL; this occurred at 703 kCal/day of physical activity. The association of physical activity and SUA was negative from 0 to 703 kCal/day (p = 0.07) and positive >703 kCal/day (p < 0.01 for the change in slope). Conclusion: Physical activity and SUA are associated in a non-linear fashion, with a minimum estimated SUA at 703 kCal/day of objectively-measured physical activity. These findings raise intriguing questions about the use of physical activity as a potential adjunctive therapy in patients with gout, and further interventional studies are needed to elucidate the effects of moderate intensity exercise on SUA concentrations.