Browsing by Author "Rountree, Wes"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
Item Open Access Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1.(J Virol, 2015-10) Pollara, Justin; McGuire, Erin; Fouda, Genevieve G; Rountree, Wes; Eudailey, Josh; Overman, R Glenn; Seaton, Kelly E; Deal, Aaron; Edwards, R Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie AE; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C; Jamieson, Denise J; van der Horst, Charles; Kourtis, Athena P; Tomaras, Georgia D; Ferrari, Guido; Permar, Sallie RUNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.Item Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle VaccineLi, Dapeng; Martinez, David R; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FItem Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine.(bioRxiv, 2022-02-14) Li, Dapeng; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FCoronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies in non-human primates (NHPs) against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants. The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 10.6-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.Item Open Access Comparison of Detection Limits of Fourth- and Fifth-Generation Combination HIV Antigen-Antibody, p24 Antigen, and Viral Load Assays on Diverse HIV Isolates.(Journal of clinical microbiology, 2018-08) Stone, Mars; Bainbridge, John; Sanchez, Ana M; Keating, Sheila M; Pappas, Andrea; Rountree, Wes; Todd, Chris; Bakkour, Sonia; Manak, Mark; Peel, Sheila A; Coombs, Robert W; Ramos, Eric M; Shriver, M Kathleen; Contestable, Paul; Nair, Sangeetha Vijaysri; Wilson, David H; Stengelin, Martin; Murphy, Gary; Hewlett, Indira; Denny, Thomas N; Busch, Michael PDetection of acute HIV infection is critical for HIV public health and diagnostics. Clinical fourth-generation antigen (Ag)/antibody (Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab-alone assays but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening, and next-generation assays. Three-hundred-member panels of 20 serially diluted well-characterized antibody-negative HIV isolates for which the researchers were blind to the results (blind panels) were distributed to manufacturers and end-user labs to assess the relative analytic sensitivity of currently approved and preapproved clinical HIV fourth-generation Ag/Ab combo or p24 Ag-alone immunoassays for the detection of diverse subtypes. The limits of detection (LODs) of virus were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blind panel. On the basis of the proportion of positive results on 300 observations, all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half-log LODs, illustrating the similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo assays performed poorly. The similar performance of the different commercially available fourth-generation assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next-generation preclinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while rapid fourth-generation assays performed poorly for p24 Ag detection.Item Open Access Computational analysis of antibody dynamics identifies recent HIV-1 infection.(JCI insight, 2017-12-21) Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W; Rountree, Wes; Bainbridge, John; Grebe, Eduard; Anderson, David A; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L; Denny, Thomas N; Liao, Hua-Xin; Haynes, Barton F; Robb, Merlin L; Parkin, Neil; Santos, Breno R; Garrett, Nigel; Price, Matthew A; Naniche, Denise; Duerr, Ann C; CEPHIA group; Keating, Sheila; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D; Cohen, Myron S; Tomaras, Georgia DAccurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.Item Open Access Development and implementation of a proficiency testing program for Luminex bead-based cytokine assays.(Journal of Immunological Methods, 2014-07) Lynch, Heather E; Sanchez, Ana M; D'Souza, M Patricia; Rountree, Wes; Denny, Thomas N; Kalos, Michael; Sempowski, Gregory DLuminex bead array assays are widely used for rapid biomarker quantification due to the ability to measure up to 100 unique analytes in a single well of a 96-well plate. There has been, however, no comprehensive analysis of variables impacting assay performance, nor development of a standardized proficiency testing program for laboratories performing these assays. To meet this need, the NIH/NIAID and the Cancer Immunotherapy Consortium of the Cancer Research Institute collaborated to develop and implement a Luminex assay proficiency testing program as part of the NIH/NIAID-sponsored External Quality Assurance Program Oversight Laboratory (EQAPOL) at Duke University. The program currently monitors 25 domestic and international sites with two external proficiency panels per year. Each panel includes a de-identified commercial Luminex assay kit with standards to quantify human IFNγ, TNFα, IL-6, IL-10 and IL-2, and a series of recombinant cytokine-spiked human serum samples. All aspects of panel development, testing and shipping are performed under GCLP by EQAPOL support teams. Following development testing, a comprehensive site proficiency scoring system comprised of timeliness, protocol adherence, accuracy and precision was implemented. The overall mean proficiency score across three rounds of testing has remained stable (EP3: 76%, EP4: 75%, EP5: 77%); however, a more detailed analysis of site reported results indicates a significant improvement of intra- (within) and inter- (between) site variation, suggesting that training and remediation for poor performing sites may be having a positive impact on proficiency. Through continued proficiency testing, identification of variables affecting Luminex assay outcomes will strengthen efforts to bring standardization to the field.Item Open Access Development of an international external quality assurance program for HIV-1 incidence using the Limiting Antigen Avidity assay.(PloS one, 2019-01) Keating, Sheila M; Rountree, Wes; Grebe, Eduard; Pappas, Andrea L; Stone, Mars; Hampton, Dylan; Todd, Christopher A; Poniewierski, Marek S; Sanchez, Ana; Porth, Cassandra G; Denny, Thomas N; Busch, Michael P; EQAPOL Limiting Antigen (LAg) Incidence Assay External Quality Assurance (EQA) ProgramLaboratory assays for identifying recent HIV-1 infections are widely used for estimating incidence in cross-sectional population-level surveys in global HIV-1surveillance. Adequate assay and laboratory performance are required to ensure accurate incidence estimates. The NIAID-supported External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency testing program for the most widely-used incidence assay, the HIV-1 Limiting Antigen Avidity EIA (LAg), with US Centers for Disease Control and Prevention (CDC)-approved kits manufactured by Sedia Biosciences Corporation and Maxim Biomedical. The objective of this program is to monitor the performance of participating laboratories. Four rounds of blinded external proficiency (EP) panels were distributed to up to twenty testing sites (7 North American, 5 African, 4 Asian, 2 South American and 2 European). These panels consisted of ten plasma samples: three blinded well-characterized HIV-1-seropositive samples that were included as replicates and an HIV-negative control. The seropositive samples spanned the dynamic range of the assay and are categorized as either recent or long-term infection. Participating sites performed the assay according to manufacturers' instructions and completed an online survey to gather information on kit manufacturer, lot of kit used, laboratory procedures and the experience of technicians. On average, fifteen sites participated in each round of testing, with an average of four sites testing with only the Maxim assay, seven testing with only the Sedia assay and five sites utilizing both assays. Overall, the Sedia and Maxim assays yielded similar infection status categorization across the laboratories; however, for most of the nine HIV+ samples tested, there were significant differences in the optical density readouts, ODn (N = 8) and OD (N = 7), between LAg kit manufacturers (p < 0.05 based on mixed effects models. The EQAPOL LAg program is important for monitoring laboratory performance as well as detecting variations between manufacturers of HIV-1incidence assays.Item Open Access Establishment and maintenance of a PBMC repository for functional cellular studies in support of clinical vaccine trials.(J Immunol Methods, 2014-07) Sambor, Anna; Garcia, Ambrosia; Berrong, Mark; Pickeral, Joy; Brown, Sara; Rountree, Wes; Sanchez, Ana; Pollara, Justin; Frahm, Nicole; Keinonen, Sarah; Kijak, Gustavo H; Roederer, Mario; Levine, Gail; D'Souza, M Patricia; Jaimes, Maria; Koup, Richard; Denny, Thomas; Cox, Josephine; Ferrari, GuidoA large repository of cryopreserved peripheral blood mononuclear cells (PBMCs) samples was created to provide laboratories testing the specimens from human immunodeficiency virus-1 (HIV-1) vaccine clinical trials the material for assay development, optimization, and validation. One hundred thirty-one PBMC samples were collected using leukapheresis procedure between 2007 and 2013 by the Comprehensive T cell Vaccine Immune Monitoring Consortium core repository. The donors included 83 human immunodeficiency virus-1 (HIV-1) seronegative and 32 HIV-1 seropositive subjects. The samples were extensively characterized for the ability of T cell subsets to respond to recall viral antigens including cytomegalovirus, Epstein-Barr virus, influenza virus, and HIV-1 using Interferon-gamma (IFN-γ) enzyme linked immunospot (ELISpot) and IFN-γ/interleukin 2 (IL-2) intracellular cytokine staining (ICS) assays. A subset of samples was evaluated over time to determine the integrity of the cryopreserved samples in relation to recovery, viability, and functionality. The principal results of our study demonstrate that viable and functional cells were consistently recovered from the cryopreserved samples. Therefore, we determined that this repository of large size cryopreserved cellular samples constitutes a unique resource for laboratories that are involved in optimization and validation of assays to evaluate T, B, and NK cellular functions in the context of clinical trials.Item Open Access HIV-1 subtype C is significantly more infectious than other subtypes(JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2015-07) Demarco, Todd; Rountree, Wes; Hora, Bhavna; Chen, Yue; Keinonen, Sarah; Racz, Laura; Daniell, Lily; Louzao, Raul; Sanchez, Ana; Busch, Michael; Denny, Thomas; Gao, FengItem Open Access Laboratory accuracy improvement in the uk neqas leucocyte immunophenotyping immune monitoring program: An eleven-year review via longitudinal mixed effects modeling.(Cytometry B Clin Cytom, 2017-05-08) Bainbridge, John; Rountree, Wes; Louzao, Raul; Wong, John; Whitby, Liam; Denny, Thomas N; Barnett, DavidBACKGROUND: The United Kingdom National External Quality Assessment Service (UK NEQAS) for Leucocyte Immunophenotyping Immune Monitoring Programme, provides external quality assessment (EQA) to non-U.S. laboratories affiliated with the NIH NIAID Division of AIDS (DAIDS) clinical trials networks. Selected laboratories are required to have oversight, performance monitoring, and remediation undertaken by Immunology Quality Assessment (IQA) staff under the DAIDS contract. We examined whether laboratory accuracy improves with longer EQA participation and whether IQA remediation is effective. METHODS: Laboratory accuracy, defined by the measurement residuals from trial sample medians, was measured on four outcomes: both CD4+ absolute counts (cells/μL) and percentages; and CD8+ absolute counts (cells/μL) and percentages. Three laboratory categories were defined: IQA monitored (n = 116), United Kingdom/non-DAIDS (n = 137), and non-DAIDS/non-UK (n = 1034). For absolute count outcomes, the groups were subdivided into single platform and dual platform users. RESULTS: Increasing EQA duration was found to be associated with increasing accuracy for all groups in all four lymphocyte subsets (P < 0.0001). In the percentage outcomes, the typical IQA group laboratory improved faster than laboratories from the other two groups (P < 0.005). No difference in the overall rate of improvement was found between groups for absolute count outcomes. However, in the DPT subgroup the IQA group ultimately showed greater homogeneity. CONCLUSIONS: EQA participation coupled with effective laboratory monitoring and remedial action is strongly associated with improved laboratory accuracy, both incrementally and in the proportion of laboratories meeting suggested standards. Improvement in accuracy provides more reliable laboratory information facilitating more appropriate patient treatment decisions. © 2017 International Clinical Cytometry Society.Item Open Access Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization.(Cell reports, 2020-02) Han, Qifeng; Bradley, Todd; Williams, Wilton B; Cain, Derek W; Montefiori, David C; Saunders, Kevin O; Parks, Robert J; Edwards, Regina W; Ferrari, Guido; Mueller, Olaf; Shen, Xiaoying; Wiehe, Kevin J; Reed, Steven; Fox, Christopher B; Rountree, Wes; Vandergrift, Nathan A; Wang, Yunfei; Sutherland, Laura L; Santra, Sampa; Moody, M Anthony; Permar, Sallie R; Tomaras, Georgia D; Lewis, Mark G; Van Rompay, Koen KA; Haynes, Barton FHIV-1-infected infants develop broadly neutralizing antibodies (bnAbs) more rapidly than adults, suggesting differences in the neonatal versus adult responses to the HIV-1 envelope (Env). Here, trimeric forms of HIV-1 Env immunogens elicit increased gp120- and gp41-specific antibodies more rapidly in neonatal macaques than adult macaques. Transcriptome analyses of neonatal versus adult immune cells after Env vaccination reveal that neonatal macaques have higher levels of the apoptosis regulator BCL2 in T cells and lower levels of the immunosuppressive interleukin-10 (IL-10) receptor alpha (IL10RA) mRNA transcripts in T cells, B cells, natural killer (NK) cells, and monocytes. In addition, immunized neonatal macaques exhibit increased frequencies of activated blood T follicular helper-like (Tfh) cells compared to adults. Thus, neonatal macaques have transcriptome signatures of decreased immunosuppression and apoptosis compared with adult macaques, providing an immune landscape conducive to early-life immunization prior to sexual debut.Item Open Access Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells.(Journal of immunological methods, 2014-07) Sarzotti-Kelsoe, Marcella; Daniell, Xiaoju; Todd, Christopher A; Bilska, Miroslawa; Martelli, Amanda; LaBranche, Celia; Perez, Lautaro G; Ochsenbauer, Christina; Kappes, John C; Rountree, Wes; Denny, Thomas N; Montefiori, David CA3R5 is a human CD4(+) lymphoblastoid cell line that was engineered to express CCR5 and is useful for the detection of weak neutralizing antibody responses against tier 2 strains of HIV-1. Here we describe the optimization and validation of the HIV-1 neutralizing antibody assay that utilizes A3R5 cells, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay utilizes Renilla luciferase-expressing replication competent infectious molecular clones (IMC) encoding heterologous env genes from different HIV-1 clades. Key assay validation parameters tested included specificity, accuracy, precision, limit of detection and quantitation, specificity, linearity and range, and robustness. Plasma samples demonstrated higher non-specific activity than serum samples in the A3R5 assay. This assay can tolerate a wide range of virus input but is more sensitive to cell concentration. The higher sensitivity of the A3R5 assay in neutralization responses to tier 2 strains of HIV-1 makes it complementary to, but not a substitute for the TZM-bl assay. The validated A3R5 assay is employed as an endpoint immunogenicity test for vaccine-elicited neutralizing antibodies against tier 2 strains of HIV-1, and to identify correlates of protection in HIV-1 vaccine trials conducted globally.Item Open Access Statistical methods for the assessment of EQAPOL proficiency testing: ELISpot, Luminex, and Flow Cytometry.(Journal of Immunological Methods, 2014-07) Rountree, Wes; Vandergrift, Nathan; Bainbridge, John; Sanchez, Ana M; Denny, Thomas NIn September 2011 Duke University was awarded a contract to develop the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) External Quality Assurance Program Oversight Laboratory (EQAPOL). Through EQAPOL, proficiency testing programs are administered for Interferon-γ (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot), Intracellular Cytokine Staining Flow Cytometry (ICS) and Luminex-based cytokine assays. One of the charges of the EQAPOL program was to apply statistical methods to determine overall site performance. We utilized various statistical methods for each program to find the most appropriate for assessing laboratory performance using the consensus average as the target value. Accuracy ranges were calculated based on Wald-type confidence intervals, exact Poisson confidence intervals, or via simulations. Given the nature of proficiency testing data, which has repeated measures within donor/sample made across several laboratories; the use of mixed effects models with alpha adjustments for multiple comparisons was also explored. Mixed effects models were found to be the most useful method to assess laboratory performance with respect to accuracy to the consensus. Model based approaches to the proficiency testing data in EQAPOL will continue to be utilized. Mixed effects models also provided a means of performing more complex analyses that would address secondary research questions regarding within and between laboratory variability as well as longitudinal analyses.Item Open Access The Center for HIV/AIDS Vaccine Immunology (CHAVI) multi-site quality assurance program for cryopreserved human peripheral blood mononuclear cells.(J Immunol Methods, 2014-07) Sarzotti-Kelsoe, Marcella; Needham, Leila K; Rountree, Wes; Bainbridge, John; Gray, Clive M; Fiscus, Susan A; Ferrari, Guido; Stevens, Wendy S; Stager, Susan L; Binz, Whitney; Louzao, Raul; Long, Kristy O; Mokgotho, Pauline; Moodley, Niranjini; Mackay, Melanie; Kerkau, Melissa; McMillion, Takesha; Kirchherr, Jennifer; Soderberg, Kelly A; Haynes, Barton F; Denny, Thomas NThe Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage.Item Open Access The External Quality Assurance Oversight Laboratory (EQAPOL) proficiency program for IFN-gamma enzyme-linked immunospot (IFN-γ ELISpot) assay.(Journal of Immunological Methods, 2014-07) Sanchez, Ana M; Rountree, Wes; Berrong, Mark; Garcia, Ambrosia; Schuetz, Alexandra; Cox, Josephine; Frahm, Nicole; Manak, Mark; Sarzotti-Kelsoe, Marcella; D'Souza, M Patricia; Denny, Thomas; Ferrari, GuidoThe interferon-gamma enzyme-linked immunospot (IFN-γ ELISpot) assay has been developed and used as an end-point assay in clinical trials for infectious diseases and cancer to detect the magnitude of antigen-specific immune responses. The ability to compare data generated by different laboratories across organizations is pivotal to understand the relative potency of different therapeutic and vaccine strategies. We developed an external proficiency program for the IFN-γ ELISpot assay that evaluates laboratory performance based on five parameters: timeliness for data reporting; ability to handle cellular samples; detection of background (non-specific) responses; accuracy to consensus of the results; and precision of the measurements. Points are awarded for each criterion, and the sum of the points is used to determine a numeric and adjectival performance rating. Importantly, the evaluation of the accuracy to the consensus mean for the detection of antigen-specific responses using laboratory-specific procedures informs each laboratory and its sponsor on the degree of concordance of its results with those obtained by other laboratories. This study will ultimately provide the scientific community with information on how to organize and implement an external proficiency program to evaluate longitudinally the performance of the participating laboratories and, therefore, fulfill the requirements of the GCLP guidelines for laboratories performing end-point IFN-γ ELISpot assay for clinical trials.Item Open Access The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates.(bioRxiv, 2021-02-18) Li, Dapeng; Edwards, Robert J; Manne, Kartik; Martinez, David R; Schäfer, Alexandra; Alam, S Munir; Wiehe, Kevin; Lu, Xiaozhi; Parks, Robert; Sutherland, Laura L; Oguin, Thomas H; McDanal, Charlene; Perez, Lautaro G; Mansouri, Katayoun; Gobeil, Sophie MC; Janowska, Katarzyna; Stalls, Victoria; Kopp, Megan; Cai, Fangping; Lee, Esther; Foulger, Andrew; Hernandez, Giovanna E; Sanzone, Aja; Tilahun, Kedamawit; Jiang, Chuancang; Tse, Longping V; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Cronin, Kenneth; Gee-Lai, Victoria; Deyton, Margaret; Barr, Maggie; Holle, Tarra Von; Macintyre, Andrew N; Stover, Erica; Feldman, Jared; Hauser, Blake M; Caradonna, Timothy M; Scobey, Trevor D; Rountree, Wes; Wang, Yunfei; Moody, M Anthony; Cain, Derek W; DeMarco, C Todd; Denny, ThomasN; Woods, Christopher W; Petzold, Elizabeth W; Schmidt, Aaron G; Teng, I-Ting; Zhou, Tongqing; Kwong, Peter D; Mascola, John R; Graham, Barney S; Moore, Ian N; Seder, Robert; Andersen, Hanne; Lewis, Mark G; Montefiori, David C; Sempowski, Gregory D; Baric, Ralph S; Acharya, Priyamvada; Haynes, Barton F; Saunders, Kevin OSARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro , while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Nonetheless, three of 31 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo , increased lung inflammation can occur in SARS-CoV-2 antibody-infused macaques.Item Open Access Toward development of a comprehensive external quality assurance program for polyfunctional intracellular cytokine staining assays(Journal of Immunological Methods, 2014-01-01) Staats, Janet S; Enzor, Jennifer H; Sanchez, Ana M; Rountree, Wes; Chan, Cliburn; Jaimes, Maria; Chan, Ray Chun-Fai; Gaur, Amitabh; Denny, Thomas N; Weinhold, Kent JThe External Quality Assurance Program Oversight Laboratory (EQAPOL) Flow Cytometry Program assesses the proficiency of NIH/NIAID/DAIDS-supported and potentially other interested research laboratories in performing Intracellular Cytokine Staining (ICS) assays. The goal of the EQAPOL Flow Cytometry External Quality Assurance Program (EQAP) is to provide proficiency testing and remediation for participating sites. The program is not punitive; rather, EQAPOL aims to help sites identify areas for improvement. EQAPOL utilizes a highly standardized ICS assay to minimize variability and readily identify those sites experiencing technical difficulties with their assays. Here, we report the results of External Proficiency 3 (EP3) where participating sites performed a 7-color ICS assay. On average, sites perform well in the Flow Cytometry EQAP (median score is "Good"). The most common technical issues identified by the program involve protocol adherence and data analysis; these areas have been the focus of site remediation. The EQAPOL Flow Cytometry team is now in the process of expanding the program to 8-color ICS assays. Evaluating polyfunctional ICS responses would align the program with assays currently being performed in support of HIV immune monitoring assays. © 2014 Elsevier B.V.Item Open Access Variability of the IFN-γ ELISpot assay in the context of proficiency testing and bridging studies.(J Immunol Methods, 2016-06) Rountree, Wes; Berrong, Mark; Sanchez, Ana M; Denny, Thomas N; Ferrari, GuidoAssays that assess cellular mediated immune responses performed under Good Clinical Laboratory Practice (GCLP) guidelines are required to provide specific and reproducible results. Defined validation procedures are required to establish the Standard Operating Procedure (SOP), include pass and fail criteria, as well as implement positivity criteria. However, little to no guidance is provided on how to perform longitudinal assessment of the key reagents utilized in the assay. Through the External Quality Assurance Program Oversight Laboratory (EQAPOL), an Interferon-gamma (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot) assay proficiency testing program is administered. A limit of acceptable within site variability was estimated after six rounds of proficiency testing (PT). Previously, a PT send-out specific within site variability limit was calculated based on the dispersion (variance/mean) of the nine replicate wells of data. Now an overall 'dispersion limit' for the ELISpot PT program within site variability has been calculated as a dispersion of 3.3. The utility of this metric was assessed using a control sample to calculate the within (precision) and between (accuracy) experiment variability to determine if the dispersion limit could be applied to bridging studies (studies that assess lot-to-lot variations of key reagents) for comparing the accuracy of results with new lots to results with old lots. Finally, simulations were conducted to explore how this dispersion limit could provide guidance in the number of replicate wells needed for within and between experiment variability and the appropriate donor reactivity (number of antigen-specific cells) to be used for the evaluation of new reagents. Our bridging study simulations indicate using a minimum of six replicate wells of a control donor sample with reactivity of at least 150 spot forming cells per well is optimal. To determine significant lot-to-lot variations use the 3.3 dispersion limit for between and within experiment variability.