Browsing by Author "Rude, Thomas H"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A genome-wide association study of variants associated with acquisition of Staphylococcus aureus bacteremia in a healthcare setting.(BMC Infect Dis, 2014-02-13) Nelson, Charlotte L; Pelak, Kimberly; Podgoreanu, Mihai V; Ahn, Sun Hee; Scott, William K; Allen, Andrew S; Cowell, Lindsay G; Rude, Thomas H; Zhang, Yurong; Tong, Amy; Ruffin, Felicia; Sharma-Kuinkel, Batu K; Fowler, Vance GBACKGROUND: Humans vary in their susceptibility to acquiring Staphylococcus aureus infection, and research suggests that there is a genetic basis for this variability. Several recent genome-wide association studies (GWAS) have identified variants that may affect susceptibility to infectious diseases, demonstrating the potential value of GWAS in this arena. METHODS: We conducted a GWAS to identify common variants associated with acquisition of S. aureus bacteremia (SAB) resulting from healthcare contact. We performed a logistic regression analysis to compare patients with healthcare contact who developed SAB (361 cases) to patients with healthcare contact in the same hospital who did not develop SAB (699 controls), testing 542,410 SNPs and adjusting for age (by decade), sex, and 6 significant principal components from our EIGENSTRAT analysis. Additionally, we evaluated the joint effect of the host and pathogen genomes in association with severity of SAB infection via logistic regression, including an interaction of host SNP with bacterial genotype, and adjusting for age (by decade), sex, the 6 significant principal components, and dialysis status. Bonferroni corrections were applied in both analyses to control for multiple comparisons. RESULTS: Ours is the first study that has attempted to evaluate the entire human genome for variants potentially involved in the acquisition or severity of SAB. Although this study identified no common variant of large effect size to have genome-wide significance for association with either the risk of acquiring SAB or severity of SAB, the variant (rs2043436) most significantly associated with severity of infection is located in a biologically plausible candidate gene (CDON, a member of the immunoglobulin family) and may warrant further study. CONCLUSIONS: The genetic architecture underlying SAB is likely to be complex. Future investigations using larger samples, narrowed phenotypes, and advances in both genotyping and analytical methodologies will be important tools for identifying causative variants for this common and serious cause of healthcare-associated infection.Item Open Access Dusp3 and Psme3 are associated with murine susceptibility to Staphylococcus aureus infection and human sepsis.(PLoS Pathog, 2014-06) Yan, Qin; Sharma-Kuinkel, Batu K; Deshmukh, Hitesh; Tsalik, Ephraim L; Cyr, Derek D; Lucas, Joseph; Woods, Christopher W; Scott, William K; Sempowski, Gregory D; Thaden, Joshua T; Rude, Thomas H; Ahn, Sun Hee; Fowler, Vance GUsing A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.Item Open Access Polymorphisms in Fibronectin Binding Proteins A and B among Staphylococcus aureus Bloodstream Isolates Are Not Associated with Arthroplasty Infection.(PLoS One, 2015) Eichenberger, Emily M; Thaden, Joshua T; Sharma-Kuinkel, Batu; Park, Lawrence P; Rude, Thomas H; Ruffin, Felicia; Hos, Nina J; Seifert, Harald; Rieg, Siegbert; Kern, Winfried V; Lower, Steven K; Fowler, Vance G; Kaasch, Achim JBACKGROUND: Nonsynonymous single nucleotide polymorphisms (SNPs) in fibronectin binding protein A (fnbA) of Staphylococcus aureus are associated with cardiac device infections. However, the role of fnbA SNPs in S. aureus arthroplasty infection is unknown. METHODS: Bloodstream S. aureus isolates from a derivation cohort of patients at a single U.S. medical center with S. aureus bacteremia (SAB) and prosthetic hip or knee arthroplasties that were infected (PJI, n = 27) or uninfected (PJU, n = 43) underwent sequencing of fnbA and fnbB. A validation cohort of S. aureus bloodstream PJI (n = 12) and PJU (n = 58) isolates from Germany also underwent fnbA and fnbB sequencing. RESULTS: Overall, none of the individual fnbA or fnbB SNPs were significantly associated with the PJI or PJU clinical groups within the derivation cohort. Similarly, none of the individual fnbA or fnbB SNPs were associated with PJI or PJU when the analysis was restricted to patients with either early SAB (i.e., bacteremia occurring <1 year after placement or manipulation of prostheses) or late SAB (i.e., bacteremia >1 year after placement or manipulation of prostheses). CONCLUSIONS: In contrast to cardiac device infections, there is no association between nonsynonymous SNPs in fnbA or fnbB of bloodstream S. aureus isolates and arthroplasty infection. These results suggest that initial steps leading to S. aureus infection of cardiovascular and orthopedic prostheses may arise by distinct processes.Item Open Access Potential Influence of Staphylococcus aureus Clonal Complex 30 Genotype and Transcriptome on Hematogenous Infections.(Open Forum Infect Dis, 2015-09) Sharma-Kuinkel, Batu K; Mongodin, Emmanuel F; Myers, Jason R; Vore, Kelly L; Canfield, Greg S; Fraser, Claire M; Rude, Thomas H; Fowler, Vance G; Gill, Steven RBackground. The contemporary Staphylococcus aureus clonal complex (CC) 30 lineage is associated with complicated infections, including endocarditis and osteomyelitis. This lineage diverged from the phage-type 80/81 S aureus clone responsible for a major bacterial epidemic of the 20th century. The genome and transcriptome features that contribute to complicated infections of the CC30 lineage are unknown. Methods. Twenty-nine clinical methicillin-resistant S aureus (MRSA) strains (8 from CC30 and 21 from other major CCs were evaluated for virulence using murine and Galleria mellonella sepsis models. Genomic features of CC30 were identified by comparative genome sequencing and RNA-Seq transcriptome analysis of the 29 strains and 31 previously sequenced S aureus genomes. Results. The CC30 isolates displayed lower virulence in the sepsis models compared with other CCs [P < .0001]. Comparisons of orthologous proteins and transcriptome analysis identified genes (eg, nitric oxide reductase) and changes in metabolic pathways (eg, pyrimidine metabolism) that contribute to the distinct CC30 phenotype. Previously reported nonsynonymous single-nucleotide polymorphisms (SNPs) were found in accessory gene regulator C (agrC) and α-hemolysin (hla), molecules important for virulence. Additional nonsynonymous SNPs conserved across clinical CC30 isolates when compared with the first sequenced contemporary CC30 clone, MRSA-16, were identified in multiple genes, suggesting continuing evolutionary divergence in this lineage. Conclusions. Genomic and transcriptional analyses suggest that the CC30 lineage has acquired metabolic features that contribute to persistent and complicated infections. Absence of sepsis-induced mortality in animal models may be due in part to its unique genomic profile and suggests that specific genotypes of S aureus elicit distinct types of infection types.Item Open Access Whole Genome Sequencing of a Methicillin-Resistant Staphylococcus aureus Pseudo-Outbreak in a Professional Football Team.(Open Forum Infect Dis, 2014-12) Anderson, Deverick J; Harris, Simon R; Godofsky, Eliot; Toriscelli, Todd; Rude, Thomas H; Elder, Kevin; Sexton, Daniel J; Pellman, Elliot J; Mayer, Thom; Fowler, Vance G; Peacock, Sharon JTwo American football players on the same team were diagnosed with methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections on the same day. Our investigation, including whole genome sequencing, confirmed that players did not transmit MRSA to one another nor did they acquire the MRSA from a single source within the training facility.