Browsing by Author "Russell, J Lauren"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Restricted Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.(PLoS One, 2010-07-12) Meadows, Sarah K; Dressman, Holly K; Daher, Pamela; Himburg, Heather; Russell, J Lauren; Doan, Phuong; Chao, Nelson J; Lucas, Joseph; Nevins, Joseph R; Chute, John PIn the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.Item Open Access Epidermal growth factor regulates hematopoietic regeneration after radiation injury.(Nat Med, 2013-03) Doan, Phuong L; Himburg, Heather A; Helms, Katherine; Russell, J Lauren; Fixsen, Emma; Quarmyne, Mamle; Harris, Jeffrey R; Deoliviera, Divino; Sullivan, Julie M; Chao, Nelson J; Kirsch, David G; Chute, John PThe mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow serum of mice bearing deletion of Bak and Bax in TIE2-expressing cells in Tie2Cre; Bak1(-/-); Bax(flox/-) mice. These mice showed radioprotection of the HSC pool and 100% survival after a lethal dose of total-body irradiation (TBI). Bone marrow HSCs from wild-type mice expressed functional EGF receptor (EGFR), and systemic administration of EGF promoted the recovery of the HSC pool in vivo and improved the survival of mice after TBI. Conversely, administration of erlotinib, an EGFR antagonist, decreased both HSC regeneration and the survival of mice after TBI. Mice with EGFR deficiency in VAV-expressing hematopoietic cells also had delayed recovery of bone marrow stem and progenitor cells after TBI. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect through repression of the proapoptotic protein PUMA. Our findings show that EGFR signaling regulates HSC regeneration after myelosuppressive injury.