# Browsing by Author "Sabau, AS"

Now showing 1 - 3 of 3

###### Results Per Page

###### Sort Options

Item Open Access Arrays of flow channels with heat transfer embedded in conducting walls(International Journal of Heat and Mass Transfer, 2016-08-01) Bejan, A; Almerbati, A; Lorente, S; Sabau, AS; Klett, JWHere we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. We also consider arrays of square elements and triangular elements, on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.Item Open Access Counterflow heat exchanger with core and plenums at both ends(International Journal of Heat and Mass Transfer, 2016-08-01) Bejan, A; Alalaimi, M; Lorente, S; Sabau, AS; Klett, JWThis paper illustrates the morphing of flow architecture toward greater performance in a counterflow heat exchanger. The architecture consists of two plenums with a core of counterflow channels between them. Each stream enters one plenum and then flows in a channel that travels the core and crosses the second plenum. The volume of the heat exchanger is fixed while the volume fraction occupied by each plenum is variable. Performance is driven by two objectives, simultaneously: low flow resistance and low thermal resistance. The analytical and numerical results show that the overall flow resistance is the lowest when the core is absent, and each plenum occupies half of the available volume and is oriented in counterflow with the other plenum. In this configuration, the thermal resistance also reaches its lowest value. These conclusions hold for fully developed laminar flow and turbulent flow through the core. The curve for effectiveness vs number of heat transfer units (Ntu) is steeper (when Ntu < 1) than the classical curves for counterflow and crossflow.Item Open Access Entrance-length dendritic plate heat exchangers(International Journal of Heat and Mass Transfer, 2017-01-01) Bejan, A; Alalaimi, M; Sabau, AS; Lorente, S© 2017 Elsevier Ltd. Here we explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volume and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. The maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.