Browsing by Author "Sabbineni, H"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An energy-efficient data delivery scheme for delay-sensitive traffic in wireless sensor networks(International Journal of Distributed Sensor Networks, 2010-12-01) Sabbineni, H; Chakrabarty, KWe propose a novel data-delivery method for delay-sensitive traffic that significantly reduces the energy consumption in wireless sensor networks without reducing the number of packets that meet end-to-end real-time deadlines. The proposed method, referred to as SensiQoS, leverages the spatial and temporal correlation between the data generated by events in a sensor network and realizes energy savings through application-specific in-network aggregation of the data. SensiQoS maximizes energy savings by adaptively waiting for packets from upstream nodes to perform in-network processing without missing the real-time deadline for the data packets. SensiQoS is a distributed packet scheduling scheme, where nodes make localized decisions on when to schedule a packet for transmission to meet its end-to-end real-time deadline and to which neighbor they should forward the packet to save energy. We also present a localized algorithm for nodes to adapt to network traffic to maximize energy savings in the network. Simulation results show that SensiQoS improves the energy savings in sensor networks where events are sensed by multiple nodes, and spatial and/or temporal correlation exists among the data packets. Energy savings due to SensiQoS increase with increase in the density of the sensor nodes and the size of the sensed events. © 2010 Harshavardhan Sabbineni and Krishnendu Chakrabarty.Item Open Access Datacollection in event-driven wireless sensor networks with mobile sinks(International Journal of Distributed Sensor Networks, 2010-12-01) Sabbineni, H; Chakrabarty, KWe present a two-tier distributed hash table-based scheme for data-collection in event-driven wireless sensor networks. The proposed method leverages mobile sinks to significantly extend the lifetime of the sensor network. We propose localized algorithms using a distributed geographic hash-table mechanism that adds load balancing capabilities to the data-collection process. We address the hotspot problem by rehashing the locations of the mobile sinks periodically. The proposed mobility model moves the sink node only upon the occurrence of an event according to the evolution of current events, so as to minimize the energy consumption incurred by the multihop transmission of the event-data. Data is collected via single-hop routing between the sensor node and the mobile sink. Simulation results demonstrate significant gains in energy savings, while keeping the latency and the communication overhead at low levels for a variety of parameter values. © 2010 Harshavardhan Sabbineni and Krishnendu Chakrabarty.