Browsing by Author "Salisbury, BA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise.(Journal of the American College of Cardiology, 2011-06) Kapplinger, JD; Landstrom, AP; Salisbury, BA; Callis, TE; Pollevick, GD; Tester, DJ; Cox, MGPJ; Bhuiyan, Z; Bikker, H; Wiesfeld, ACP; Hauer, RNW; Van Tintelen, JP; Jongbloed, JDH; Calkins, H; Judge, DP; Wilde, AAM; Ackerman, MJOBJECTIVES:The aims of this study were to determine the spectrum and prevalence of "background genetic noise" in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result. BACKGROUND:ARVC is a potentially lethal genetic cardiovascular disorder characterized by myocyte loss and fibrofatty tissue replacement of the right ventricle. Genetic variation among the ARVC susceptibility genes has not been systematically examined, and little is known about the background noise associated with the ARVC genetic test. METHODS:Using direct deoxyribonucleic acid sequencing, the coding exons/splice junctions of PKP2, DSP, DSG2, DSC2, and TMEM43 were genotyped for 93 probands diagnosed with ARVC from the Netherlands and 427 ostensibly healthy controls of various ethnicities. Eighty-two additional ARVC cases were obtained from published reports, and additional mutations were included from the ARVD/C Genetic Variants Database. RESULTS:The overall yield of mutations among ARVC cases was 58% versus 16% in controls. Radical mutations were hosted by 0.5% of control individuals versus 43% of ARVC cases, while 16% of controls hosted missense mutations versus a similar 21% of ARVC cases. Relative to controls, mutations in cases occurred more frequently in non-Caucasians, localized to the N-terminal regions of DSP and DSG2, and localized to highly conserved residues within PKP2 and DSG2. CONCLUSIONS:This study is the first to comprehensively evaluate genetic variation in healthy controls for the ARVC susceptibility genes. Radical mutations are high-probability ARVC-associated mutations, whereas rare missense mutations should be interpreted in the context of race and ethnicity, mutation location, and sequence conservation.Item Open Access Distinguishing hypertrophic cardiomyopathy-associated mutations from background genetic noise.(Journal of cardiovascular translational research, 2014-04) Kapplinger, JD; Landstrom, AP; Bos, JM; Salisbury, BA; Callis, TE; Ackerman, MJDespite the significant progress that has been made in identifying disease-associated mutations, the utility of the hypertrophic cardiomyopathy (HCM) genetic test is limited by a lack of understanding of the background genetic variation inherent to these sarcomeric genes in seemingly healthy subjects. This study represents the first comprehensive analysis of genetic variation in 427 ostensibly healthy individuals for the HCM genetic test using the "gold standard" Sanger sequencing method validating the background rate identified in the publically available exomes. While mutations are clearly overrepresented in disease, a background rate as high as ∼5 % among healthy individuals prevents diagnostic certainty. To this end, we have identified a number of estimated predictive value-based associations including gene-specific, topology, and conservation methods generating an algorithm aiding in the probabilistic interpretation of an HCM genetic test.