Browsing by Author "Schramm, Chaim A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.(Nature, 2013-04-25) Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S Munir; Boyd, Scott D; Fire, Andrew Z; Roskin, Krishna M; Schramm, Chaim A; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; NISC Comparative Sequencing Program; Mullikin, James C; Gnanakaran, S; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C; Parks, Robert; Lloyd, Krissey E; Scearce, Richard M; Soderberg, Kelly A; Cohen, Myron; Kamanga, Gift; Louder, Mark K; Tran, Lillian M; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, M Gordon; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M; Hahn, Beatrice H; Kepler, Thomas B; Korber, Bette TM; Kwong, Peter D; Mascola, John R; Haynes, Barton FCurrent human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.Item Open Access Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth.(Science (New York, N.Y.), 2020-11-19) Roark, Ryan S; Li, Hui; Williams, Wilton B; Chug, Hema; Mason, Rosemarie D; Gorman, Jason; Wang, Shuyi; Lee, Fang-Hua; Rando, Juliette; Bonsignori, Mattia; Hwang, Kwan-Ki; Saunders, Kevin O; Wiehe, Kevin; Moody, M Anthony; Hraber, Peter T; Wagh, Kshitij; Giorgi, Elena E; Russell, Ronnie M; Bibollet-Ruche, Frederic; Liu, Weimin; Connell, Jesse; Smith, Andrew G; DeVoto, Julia; Murphy, Alexander I; Smith, Jessica; Ding, Wenge; Zhao, Chengyan; Chohan, Neha; Okumura, Maho; Rosario, Christina; Ding, Yu; Lindemuth, Emily; Bauer, Anya M; Bar, Katharine J; Ambrozak, David; Chao, Cara W; Chuang, Gwo-Yu; Geng, Hui; Lin, Bob C; Louder, Mark K; Nguyen, Richard; Zhang, Baoshan; Lewis, Mark G; Raymond, Donald D; Doria-Rose, Nicole A; Schramm, Chaim A; Douek, Daniel C; Roederer, Mario; Kepler, Thomas B; Kelsoe, Garnett; Mascola, John R; Kwong, Peter D; Korber, Bette T; Harrison, Stephen C; Haynes, Barton F; Hahn, Beatrice H; Shaw, George MNeutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution strikingly similar to those in humans. This included conserved immunogenetic, structural and chemical solutions to epitope recognition and precise Env-am ino acid substitutions, insertions and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2-apex mode of recognition like that of human bNAbs PGT145/PCT64-35S. Another rhesus antibody bound the CD4-binding site by CD4 mimicry mirroring human bNAbs 8ANC131/CH235/VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.