Browsing by Author "Selgrade, Elizabeth S"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans.(Human Brain Mapping, 2013-11) Morey, Rajendra A; Haswell, Courtney C; Selgrade, Elizabeth S; Massoglia, Dino; Liu, Chunlei; Weiner, Jonathan; Marx, Christine E; MIRECC Work Group; Cernak, Ibolja; McCarthy, GregoryMild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an accurate history and assessment of behavioral symptoms that are also associated with frequent comorbid disorders, particularly posttraumatic stress disorder (PTSD) and depression. Military veterans from Iraq and Afghanistan with mild TBI (n = 30) with comorbid PTSD and depression and non-TBI participants from primary (n = 42) and confirmatory (n = 28) control groups were assessed with high angular resolution diffusion imaging (HARDI). White matter-specific registration followed by whole-brain voxelwise analysis of crossing fibers provided separate partial volume fractions reflecting the integrity of primary fibers and secondary (crossing) fibers. Loss of white matter integrity in primary fibers (P < 0.05; corrected) was associated with chronic mild TBI in a widely distributed pattern of major fiber bundles and smaller peripheral tracts including the corpus callosum (genu, body, and splenium), forceps minor, forceps major, superior and posterior corona radiata, internal capsule, superior longitudinal fasciculus, and others. Distributed loss of white matter integrity correlated with duration of loss of consciousness and most notably with "feeling dazed or confused," but not diagnosis of PTSD or depressive symptoms. This widespread spatial extent of white matter damage has typically been reported in moderate to severe TBI. The diffuse loss of white matter integrity appears consistent with systemic mechanisms of damage shared by blast- and impact-related mild TBI that involves a cascade of inflammatory and neurochemical events.Item Open Access Neural systems for guilt from actions affecting self versus others.(Neuroimage, 2012-03) Morey, Rajendra A; McCarthy, Gregory; Selgrade, Elizabeth S; Seth, Srishti; Nasser, Jessica D; LaBar, Kevin SGuilt is a core emotion governing social behavior by promoting compliance with social norms or self-imposed standards. The goal of this study was to contrast guilty responses to actions that affect self versus others, since actions with social consequences are hypothesized to yield greater guilty feelings due to adopting the perspective and subjective emotional experience of others. Sixteen participants were presented with brief hypothetical scenarios in which the participant's actions resulted in harmful consequences to self (guilt-self) or to others (guilt-other) during functional MRI. Participants felt more intense guilt for guilt-other than guilt-self and guilt-neutral scenarios. Guilt scenarios revealed distinct regions of activity correlated with intensity of guilt, social consequences of actions, and the interaction of guilt by social consequence. Guilt intensity was associated with activation of the dorsomedial PFC, superior frontal gyrus, supramarginal gyrus, and anterior inferior frontal gyrus. Guilt accompanied by social consequences was associated with greater activation than without social consequences in the ventromedial and dorsomedial PFC, precuneus, posterior cingulate, and posterior superior temporal sulcus. Finally, the interaction analysis highlighted select regions that were more strongly correlated with guilt intensity as a function of social consequence, including the left anterior inferior frontal gyrus, left ventromedial PFC, and left anterior inferior parietal cortex. Our results suggest these regions intensify guilt where harm to others may incur a greater social cost.Item Open Access Scan-rescan reliability of subcortical brain volumes derived from automated segmentation.(Hum Brain Mapp, 2010-11) Morey, Rajendra A; Selgrade, Elizabeth S; Wagner, Henry Ryan; Huettel, Scott A; Wang, Lihong; McCarthy, GregoryLarge-scale longitudinal studies of regional brain volume require reliable quantification using automated segmentation and labeling. However, repeated MR scanning of the same subject, even if using the same scanner and acquisition parameters, does not result in identical images due to small changes in image orientation, changes in prescan parameters, and magnetic field instability. These differences may lead to appreciable changes in estimates of volume for different structures. This study examined scan-rescan reliability of automated segmentation algorithms for measuring several subcortical regions, using both within-day and across-day comparison sessions in a group of 23 normal participants. We found that the reliability of volume measures including percent volume difference, percent volume overlap (Dice's coefficient), and intraclass correlation coefficient (ICC), varied substantially across brain regions. Low reliability was observed in some structures such as the amygdala (ICC = 0.6), with higher reliability (ICC = 0.9) for other structures such as the thalamus and caudate. Patterns of reliability across regions were similar for automated segmentation with FSL/FIRST and FreeSurfer (longitudinal stream). Reliability was associated with the volume of the structure, the ratio of volume to surface area for the structure, the magnitude of the interscan interval, and the method of segmentation. Sample size estimates for detecting changes in brain volume for a range of likely effect sizes also differed by region. Thus, longitudinal research requires a careful analysis of sample size and choice of segmentation method combined with a consideration of the brain structure(s) of interest and the magnitude of the anticipated effects.