Browsing by Author "Seney, EE"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A call for evaluation of the contribution made by rescue, resuscitation, rehabilitation, and release translocations to kemp’s ridley sea turtle (Lepidochelys kempii) population recovery(Herpetological Conservation and Biology, 2016-01-01) Caillouet, CW; Putman, NF; Shaver, DJ; Valverde, RA; Seney, EE; Lohmann, KJ; Mansfield, KL; Gallaway, BJ; Flanagan, JP; Godfrey, MH© 2016. Monica F. Blasi. All Rights Reserved. Kemp’s Ridley Sea Turtle (Lepidochelys kempii) conservation practices permitted by the National Marine Fisheries Service (NMFS) and U.S. Fish and Wildlife Service (USFWS), under authority of the U.S. Endangered Species Act of 1973, include translocations in which eggs or turtles are taken into captivity for various reasons and intervals, and turtles are later released into coastal waters of the Gulf of Mexico (GoM) or the Northwest Atlantic Ocean (NWAO). In 2013, the IUCN Species Survival Commission defined conservation translocation as the deliberate movement of organisms from one site for release in another, with the intention that it must yield a measurable conservation benefit at the levels of a population, species or ecosystem, and not only provide benefit to translocated individuals. Translocations of Kemp’s Ridley Sea Turtles that are found injured, ill, or otherwise debilitated, then rescued, resuscitated if necessary, rehabilitated, and released into the GoM or the NWAO have not been evaluated to determine whether they qualify as conservation translocations. We refer to them as rescue, resuscitation, rehabilitation, and release (i.e., RRRR) translocations. Captivity and human care, by altering behavioral and physiological fitness of RRRR translocated Kemp’s Ridley Sea Turtles, have the potential to influence post-release survival, growth, navigation, foraging, migration, maturation, natal beach homing, and reproduction. We recommend that NMFS and USFWS develop a plan for hypothesis-driven research and modeling aimed at determining if and how RRRR translocations contribute to Kemp’s Ridley Sea Turtle population recovery. Similar evaluations of RRRR translocations are also needed for other sea turtle species.Item Open Access Informing research priorities for immature sea turtles through expert elicitation(Endangered Species Research, 2018-01-01) Wildermann, NE; Gredzens, C; Avens, L; BarriosGarrido, HA; Bell, I; Blumenthal, J; Bolten, AB; McNeill, JB; Casale, P; Di Domenico, M; Domit, C; Epperly, SP; Godfrey, MH; Godley, BJ; González-Carman, V; Hamann, M; Hart, KM; Ishihara, T; Mansfield, KL; Metz, TL; Miller, JD; Pilcher, NJ; Read, MA; Sasso, C; Seminoff, JA; Seney, EE; Williard, AS; Tomás, J; Vélez-Rubio, GM; Ware, M; Williams, JL; Wyneken, J; Fuentes, MMPB© The authors 2018. Although sea turtles have received substantial focus worldwide, research on the immature life stages is still relatively limited. The latter is of particular importance, given that a large proportion of sea turtle populations comprises immature individuals. We set out to identify knowledge gaps and identify the main barriers hindering research in this field. We analyzed the perceptions of sea turtle experts through an online survey which gathered their opinions on the current state of affairs on immature sea turtle research, including species and regions in need of further study, priority research questions, and barriers that have interfered with the advancement of research. Our gap analysis indicates that studies on immature leatherback Dermochelys coriacea and hawksbill Eretmochelys imbricata turtles are lacking, as are studies on all species based in the Indian, South Pacific, and South Atlantic Oceans. Experts also perceived that studies in population ecology, namely on survivorship and demography, and habitat use/behavior, are needed to advance the state of knowledge on immature sea turtles. Our survey findings indicate the need for more interdisciplinary research, collaborative efforts (e.g. data-sharing, joint field activities), and improved communication among researchers, funding bodies, stakeholders, and decision-makers.Item Open Access Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization(Diversity and Distributions, 2022-04-01) Kot, CY; Åkesson, S; Alfaro-Shigueto, J; Amorocho Llanos, DF; Antonopoulou, M; Balazs, GH; Baverstock, WR; Blumenthal, JM; Broderick, AC; Bruno, I; Canbolat, AF; Casale, P; Cejudo, D; Coyne, MS; Curtice, C; DeLand, S; DiMatteo, A; Dodge, K; Dunn, DC; Esteban, N; Formia, A; Fuentes, MMPB; Fujioka, E; Garnier, J; Godfrey, MH; Godley, BJ; González Carman, V; Harrison, AL; Hart, CE; Hawkes, LA; Hays, GC; Hill, N; Hochscheid, S; Kaska, Y; Levy, Y; Ley-Quiñónez, CP; Lockhart, GG; López-Mendilaharsu, M; Luschi, P; Mangel, JC; Margaritoulis, D; Maxwell, SM; McClellan, CM; Metcalfe, K; Mingozzi, A; Moncada, FG; Nichols, WJ; Parker, DM; Patel, SH; Pilcher, NJ; Poulin, S; Read, AJ; Rees, AF; Robinson, DP; Robinson, NJ; Sandoval-Lugo, AG; Schofield, G; Seminoff, JA; Seney, EE; Snape, RTE; Sözbilen, D; Tomás, J; Varo-Cruz, N; Wallace, BP; Wildermann, NE; Witt, MJ; Zavala-Norzagaray, AA; Halpin, PNAim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.