Browsing by Author "Shamji, Mohammed F"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist.(Spine, 2011-07) Sinclair, S Michael; Shamji, Mohammed F; Chen, Jun; Jing, Liufang; Richardson, William J; Brown, Christopher R; Fitch, Robert D; Setton, Lori AStudy design
The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro.Objective
To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro.Summary of background data
TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown.Methods
IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells.Results
Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively.Conclusion
Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.Item Open Access Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy.(Open Orthop J, 2012) Hwang, Priscilla Y; Allen, Kyle D; Shamji, Mohammed F; Jing, Liufang; Mata, Brian A; Gabr, Mostafa A; Huebner, Janet L; Kraus, Virginia B; Richardson, William J; Setton, Lori AIntervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.Item Open Access Gait and behavior in an IL1β-mediated model of rat knee arthritis and effects of an IL1 antagonist.(J Orthop Res, 2011-05) Allen, Kyle D; Adams, Samuel B; Mata, Brian A; Shamji, Mohammed F; Gouze, Elvire; Jing, Liufang; Nettles, Dana L; Latt, L Daniel; Setton, Lori AInterleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.Item Open Access Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells(2011-01-01) Allen, Kyle D; Chen, Jun; Fitch, Robert; Gabr, Mostafa A; Helbling, Antonia R; Jing, Liufang; Richardson, William J; Setton, Lori A; Shamji, Mohammed F; Sinclair, S MichaelInterleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ and TNFα in intervertebral disc pathology. Cells were isolated from anulus fibrosus and nucleus pulposus tissues of patients undergoing surgery for intervertebral disc degeneration or scoliosis. The production of inflammatory mediators, nitric oxide (NOx), prostaglandin E2 (PGE2) and interleukin-6 (IL-6), as well as intercellular adhesion molecule (ICAM-1) expression, were quantified for cultured cells following exposure to IL-17, IFNγ and TNFα. Intervertebral disc cells exposed to IL-17, IFNγ or TNFα showed a remarkable increase in inflammatory mediator release and ICAM-1 expression (GLM and ANOVA, p<0.05). Addition of IFNγ or TNFα to IL-17 demonstrated a synergistic increase in inflammatory mediator release, and a marked increase in ICAM-1 expression. These findings suggest that IVD cells not only respond with a catabolic phenotype to IL-17 and costimulants IFNγ and TNFα, but also express surface ligands with consequent potential to recruit additional lymphocytes and immune cells to the IVD microenvironment. IL-17 may be an important regulator of inflammation in the IVD pathologies.Item Open Access Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells.(Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2011-01) Gabr, Mostafa A; Jing, Liufang; Helbling, Antonia R; Sinclair, S Michael; Allen, Kyle D; Shamji, Mohammed F; Richardson, William J; Fitch, Robert D; Setton, Lori A; Chen, JunInterleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ and TNFα in intervertebral disc pathology. Cells were isolated from anulus fibrosus and nucleus pulposus tissues of patients undergoing surgery for intervertebral disc degeneration or scoliosis. The production of inflammatory mediators, nitric oxide (NOx), prostaglandin E2 (PGE2) and interleukin-6 (IL-6), as well as intercellular adhesion molecule (ICAM-1) expression, were quantified for cultured cells following exposure to IL-17, IFNγ, and TNFα. Intervertebral disc cells exposed to IL-17, IFNγ, or TNFα showed a remarkable increase in inflammatory mediator release and ICAM-1 expression (GLM and ANOVA, p < 0.05). Addition of IFNγ or TNFα to IL-17 demonstrated a synergistic increase in inflammatory mediator release, and a marked increase in ICAM-1 expression. These findings suggest that IVD cells not only respond with a catabolic phenotype to IL-17 and costimulants IFNγ and TNFα, but also express surface ligands with consequent potential to recruit additional lymphocytes and immune cells to the IVD microenvironment. IL-17 may be an important regulator of inflammation in the IVD pathologies.Item Open Access Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism.(Arthritis research & therapy, 2011-08-26) Allen, Kyle D; Shamji, Mohammed F; Mata, Brian A; Gabr, Mostafa A; Sinclair, S Michael; Schmitt, Daniel O; Richardson, William J; Setton, Lori ATumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception.Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6.High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1).Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.Item Open Access Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues.(Arthritis and rheumatism, 2010-07) Shamji, Mohammed F; Setton, Lori A; Jarvis, Wingrove; So, Stephen; Chen, Jun; Jing, Liufang; Bullock, Robert; Isaacs, Robert E; Brown, Christopher; Richardson, William JObjective
Prior reports document macrophage and lymphocyte infiltration with proinflammatory cytokine expression in pathologic intervertebral disc (IVD) tissues. Nevertheless, the role of the Th17 lymphocyte lineage in mediating disc disease remains uninvestigated. We undertook this study to evaluate the immunophenotype of pathologic IVD specimens, including interleukin-17 (IL-17) expression, from surgically obtained IVD tissue and from nondegenerated autopsy control tissue.Methods
Surgical IVD tissues were procured from patients with degenerative disc disease (n = 25) or herniated IVDs (n = 12); nondegenerated autopsy control tissue was also obtained (n = 8) from the anulus fibrosus and nucleus pulposus regions. Immunohistochemistry was performed for cell surface antigens (CD68 for macrophages, CD4 for lymphocytes) and various cytokines, with differences in cellularity and target immunoreactivity scores analyzed between surgical tissue groups and between autopsy control tissue regions.Results
Immunoreactivity for IL-4, IL-6, IL-12, and interferon-gamma (IFNgamma) was modest in surgical IVD tissue, although expression was higher in herniated IVD samples and virtually nonexistent in control samples. The Th17 lymphocyte product IL-17 was present in >70% of surgical tissue fields, and among control samples was detected rarely in anulus fibrosus regions and modestly in nucleus pulposus regions. Macrophages were prevalent in surgical tissues, particularly herniated IVD samples, and lymphocytes were expectedly scarce. Control tissue revealed lesser infiltration by macrophages and a near absence of lymphocytes.Conclusion
Greater IFNgamma positivity, macrophage presence, and cellularity in herniated IVDs suggests a pattern of Th1 lymphocyte activation in this pathology. Remarkable pathologic IVD tissue expression of IL-17 is a novel finding that contrasts markedly with low levels of IL-17 in autopsy control tissue. These findings suggest involvement of Th17 lymphocytes in the pathomechanism of disc degeneration.Item Open Access Recent and Emerging Advances in Spinal Deformity.(Neurosurgery, 2017-03) Smith, Justin S; Shaffrey, Christopher I; Bess, Shay; Shamji, Mohammed F; Brodke, Darrel; Lenke, Lawrence G; Fehlings, Michael G; Lafage, Virginie; Schwab, Frank; Vaccaro, Alexander R; Ames, Christopher PBackground
Over the last several decades, significant advances have occurred in the assessment and management of spinal deformity.Objective
The primary focus of this narrative review is on recent advances in adult thoracic, thoracolumbar, and lumbar deformities, with additional discussions of advances in cervical deformity and pediatric deformity.Methods
A review of recent literature was conducted.Results
Advances in adult thoracic, thoracolumbar, and lumbar deformities reviewed include the growing applications of stereoradiography, development of new radiographic measures and improved understanding of radiographic alignment objectives, increasingly sophisticated tools for radiographic analysis, strategies to reduce the occurrence of common complications, and advances in minimally invasive techniques. In addition, discussion is provided on the rapidly advancing applications of predictive analytics and outcomes assessments that are intended to improve the ability to predict risk and outcomes. Advances in the rapidly evolving field of cervical deformity focus on better understanding of how cervical alignment is impacted by thoracolumbar regional alignment and global alignment and how this can affect surgical planning. Discussion is also provided on initial progress toward development of a comprehensive cervical deformity classification system. Pediatric deformity assessment has been substantially improved with low radiation-based 3-D imaging, and promising clinical outcomes data are beginning to emerge on the use of growth-friendly implants.Conclusion
It is ultimately through the reviewed and other recent and ongoing advances that care for patients with spinal deformity will continue to evolve, enabling better informed treatment decisions, more meaningful patient counseling, reduced complications, and achievement of desired clinical outcomes.