Browsing by Author "Shen, Sipeng"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Genetic Variants in RUNX3, AMD1 and MSRA in the Methionine Metabolic Pathway and Survival in Non-small Cell Lung Cancer Patients.(International journal of cancer, 2019-01-16) Chen, Ka; Liu, Hongliang; Liu, Zhensheng; Luo, Sheng; Patz, Edward F; Moorman, Patricia G; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiAbnormal methionine dependence in cancer cells has led to methionine restriction as a potential therapeutic strategy. We hypothesized that genetic variants involved in methionine-metabolic genes are associated with survival in non-small cell lung cancer (NSCLC) patients. Therefore, we investigated associations of 16,378 common single-nucleotide polymorphisms (SNPs) in 97 methionine-metabolic pathway genes with overall survival (OS) in NSCLC patients using genotyping data from two published genome-wide association study (GWAS) datasets. In the single-locus analysis, 1,005 SNPs were significantly associated with NSCLC OS (P < 0.05 and false-positive report probability < 0.2) in the discovery dataset. Three SNPs (RUNX3 rs7553295G>T, AMD1 rs1279590G>A and MSRA rs73534533C>A) were replicated in the validation dataset and their meta-analysis showed that adjusted hazards ratio [HR] of 0.82 [95% confidence interval (CI) =0.75-0.89] and Pmeta =2.86 x 10-6 , 0.81 (0.73-0.91) and Pmeta =4.63 x 10-4 , and 0.77 (0.68-0.89) and Pmeta =2.07 x 10-4 , respectively). A genetics score of protective genotypes of these three SNPs revealed an increased OS in a dose-response manner (Ptrend <.0001). Further expression quantitative trait loci (eQTL) analysis showed significant associations between these genotypes and gene mRNA expression levels. Moreover, differential expression analysis further supported a tumor-suppressive effect of MSRA, with lower mRNA levels in both lung squamous carcinoma and adenocarcinoma (P <.0001 and <.0001, respectively) than in adjacent normal tissues. Additionally, low mutation rates of these three genes indicated the critical roles of these functional SNPs in cancer progression. Taken together, these genetic variants of methionine-metabolic pathway genes may be promising predictors of survival in NSCLC patients. This article is protected by copyright. All rights reserved.Item Open Access Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival.(American journal of cancer research, 2020-01) Tang, Dongfang; Liu, Hongliang; Zhao, Yuchen; Qian, Danwen; Luo, Sheng; Patz, Edward F; Su, Li; Shen, Sipeng; ChristianI, David C; Gao, Wen; Wei, QingyiThe nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes, and its genetic variation and functional dysregulation are involved in pathogenesis of several cancers. To systematically evaluate the role of NLRP3 in predicting outcomes of patients with non-small cell lung cancer (NSCLC), we performed a two-phase analysis for associations between genetic variants in NLRP3 inflammasome pathway genes and NSCLC survival by using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We used multivariate Cox proportional hazards regression analysis with Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 20,730 single-nucleotide polymorphisms (SNPs) in 176 genes and overall survival of 1,185 NSCLC patients from the PLCO trial. We further validated the identified significant SNPs in another GWAS dataset with survival data from 984 NSCLC patients of the Harvard Lung Cancer Susceptibility (HLCS) study. The results showed that two independent SNPs in two different genes (i.e., BIRC3 rs11225211 and NRG1 rs4733124) were significantly associated with the NSCLC overall survival, with a combined hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.74-0.93 and P = 0.0009] and 1.18 (95% CI = 1.06-1.31) and P = 0.002], respectively. However, further expression quantitative trait loci (eQTL) analysis showed no evidence for correlations between the two SNPs and mRNA expression levels of corresponding genes. These results indicated that genetic variants in the NLRP3 imflammasome pathway gene-sets might be predictors of NSCLC survival, but the molecular mechanisms underlying the observed associations warrant further investigations.Item Open Access Novel genetic variants in genes of the Fc gamma receptor-mediated phagocytosis pathway predict non-small cell lung cancer survival.(Translational lung cancer research, 2020-06) Qian, Danwen; Liu, Hongliang; Zhao, Lingling; Wang, Xiaomeng; Luo, Sheng; Moorman, Patricia G; Patz, Edward F; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiBackground:Both antibody-dependent cellular cytotoxicity and phagocytosis activate innate immunity, and the Fc gamma receptor (FCGR)-mediated phagocytosis is an integral part of the process. We assessed associations between single-nucleotide polymorphisms (SNPs) in FCGR-related genes and survival of patients with non-small cell lung cancer (NSCLC). Methods:We evaluated associations between 24,734 (SNPs) in 97 FCGR-related genes and survival of 1,185 patients with NSCLC using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the results in another independent dataset of 894 NSCLC patients. Results:In the single-locus analysis with Bayesian false discovery probability (BFDP) for multiple testing correction, we found 1,084 SNPs to be significantly associated overall survival (OS) (P<0.050 and BFDP ≤0.80), of which two independent SNPs (PLCG2 rs9673682 T>G and PLPP1 rs115613985 T>A) were further validated in another GWAS dataset of 894 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study, with combined allelic hazards ratios for OS of 0.87 [95% confidence interval (CI): 0.81-0.94 and P=5.90×10-4] and 1.18 (95% CI: 1.08-1.29 and 1.32×10-4, respectively). Expression quantitative trait loci analysis showed that the rs9673682 G allele was significantly correlated with increased mRNA expression levels of PLCG2 in 373 transformed lymphoblastoid cell-lines (P=7.20×10-5). Additional evidence from differential expression analysis further supported a tumor-suppressive effect of PLCG2 on OS of patients with lung cancer, with lower mRNA expression levels in both lung squamous carcinoma and adenocarcinoma than in adjacent normal tissues. Conclusions:Genetic variants in PLCG2 of the FCGR-mediated phagocytosis pathway may be promising predictors of NSCLC survival, possibly through modulating gene expression, but additional investigation of the molecular mechanisms of PLPP1 rs115613985 is warranted.Item Open Access Novel genetic variants in HDAC2 and PPARGC1A of the CREB-binding protein pathway predict survival of non-small-cell lung cancer.(Molecular carcinogenesis, 2019-11-12) Tang, Dongfang; Zhao, Yu Chen; Qian, Danwen; Liu, Hongliang; Luo, Sheng; Patz, Edward F; Moorman, Patricia G; Su, Li; Shen, Sipeng; Christiani, David C; Glass, Carolyn; Gao, Wen; Wei, QingyiThe CREB-binding protein (CBP) pathway plays an important role in transcription and activity of acetyltransferase that acetylates lysine residues of histones and nonhistone proteins. In the present study, we hypothesized that genetic variants in the CBP pathway genes played a role in survival of non-small-cell lung cancer (NSCLC). We tested this hypothesis using the genotyping data from the genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In the single-locus analysis, we evaluated associations between 13 176 (1107 genotyped and 12 069 imputed) single-nucleotide polymorphisms (SNPs) in 72 genes and survival of 1185 patients with NSCLC. The identified 106 significant SNPs in the discovery were further validated in additional genotyping data from another GWAS dataset of 984 patients with NSCLC in the Harvard Lung Cancer Susceptibility Study. The combined results of two datasets showed that two independent, potentially functional SNPs (i.e., HDAC2 rs13213007G>A and PPARGC1A rs60571065T>A) were significantly associated with NSCLC overall survival, with a combined hazards ratio (HR) of 1.26 (95% confidence interval (CI), 1.09-1.45; P = .002) and 1.23 (1.04-1.47; P = .017), respectively. Furthermore, we performed an expression quantitative trait loci analysis and found that the survival-associated HDAC2 rs13213007A allele (GA+AA), but not PPARGC1A rs60571065A allele (TA+AA), was significantly associated with increased messenger RNA expression levels of HDAC2 in 373 lymphoblastoid cell lines. These results indicate that the HDAC2 rs13213007A allele is a potential predictor of NSCLC survival, likely by altering the HDAC2 expression.Item Open Access Novel genetic variants in KIF16B and NEDD4L in the endosome-related genes are associated with non-small cell lung cancer survival.(International journal of cancer, 2019-10-16) Yang, Sen; Tang, Dongfang; Zhao, Yu C; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wang, Qiming; Wei, QingyiThe endosome is a membrane-bound organ inside most eukaryotic cells, playing an important role in adaptive immunity by delivering endocytosed antigens to both MHC class I and II pathways. Here, by analyzing two published genome-wide association studies (GWASs), we evaluated associations between genetic variants in the endosome-related gene-set and survival of patients with non-small cell lung cancer (NSCLC). The discovery included 44,112 (3,478 genotyped and 40,634 imputed) single-nucleotide polymorphisms (SNPs) in 220 genes in a single locus analysis for their associations with survival of 1,185 NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. After validation of the 821 survival-associated significant SNPs in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility study, 14 SNPs remained significant. The final multivariate stepwise Cox proportional hazards regression model in the PLCO datasets identified three potentially functional and independent SNPs (KIF16B rs1555195 C>T, NEDD4L rs11660748 A>G and rs73440898 A>G) with an adjusted hazards ratio (HR) of 0.86 [95% confidence interval (CI)=0.79-0.94, P=0.0007], 1.31 (1.16-1.47, P=6.0×10-5 ) and 1.27 (1.12-1.44, P=0.0001) for overall survival (OS), respectively. Combined analysis of the adverse genotypes of these three SNPs revealed a trend in the genotype-survival association (Ptrend <0.0001 for OS and Ptrend <0.0001 for disease-specific survival). Furthermore, the survival-associated KIF16B rs1555195T allele was significantly associated with decreased mRNA expression levels of KIF16B in both lung tissues and blood cells. Therefore, genetic variants of the endosome-related genes may be biomarker for NSCLC survival, possibly through modulating the expression of corresponding genes. This article is protected by copyright. All rights reserved.Item Open Access Novel genetic variants of KIR3DL2 and PVR involved in immunoregulatory interactions are associated with non-small cell lung cancer survival.(American journal of cancer research, 2020-01) Wu, Yufeng; Yang, Sen; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wang, Qiming; Wei, QingyiImmunoregulatory interactions play a pivotal role in immune surveillance, recognition, and killing, particularly its internal pathway, likely playing an important role in immune escape. By using two genotyping datasets, one from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer screening trial (n = 1,185) as the discovery, and the other from Harvard Lung Cancer Susceptibility (HLCS) study (n = 984) as the validation, we evaluated associations between 4,713 genetic variants (338 genotyped and 4,375 imputed) in 60 genes involved in immunoregulatory interactions and survival of non-small cell lung cancer (NSCLC). We found that 115 SNPs were significantly associated with NSCLC overall survival in the discovery, of which four remained significant after validation by the HLCS dataset after multiple test correction by Bayesian false discovery probability. Final combined analysis identified two independent SNPs (KIR3DL2 rs4487030 A>G and PVR rs35385129 C>A) that predicted NSCLC survival with a combined hazards ratio of 0.84 (95% confidence interval = 0.76-0.93, P = 0.001) and 0.84 (95% confidence interval = 0.73-0.97, P = 0.021), respectively. Besides, expression quantitative trait loci analyses showed that these two survival-associated SNPs of KRI3DL2 and PVR were significantly associated with their mRNA expression levels in both normal lung tissues and whole blood cells. Additional analyses suggested an oncogenic role for KRI3DL2 and a suppressor role for PVR on the survival. Once further validated, genetic variants of KIR3DL2 and PVR may be potential prognostic markers for NSCLC survival.Item Open Access Novel variants of ELP2 and PIAS1 in the interferon gamma signaling pathway are associated with non-small cell lung cancer survival.(Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2020-06-03) Zhao, Yu Chen; Tang, Dongfang; Yang, Sen; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiBACKGROUND:Interferon gamma (IFNγ) is a pleiotropic cytokine that plays critical immunomodulatory roles in intercellular communication in innate and adaptive immune responses. Despite recognition of IFNγ signaling effects on host defense against viral infection and its utility in immunotherapy and tumor progression, the roles of genetic variants of the IFNγ signaling pathway genes in cancer patient survival remain unknown. METHODS:We used a discovery genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (n=1,185) and a replication genotyping dataset from the Harvard Lung Cancer Susceptibility Study (n=984) to evaluate associations between 14,553 genetic variants in 150 IFNγ pathway genes and survival of non-small cell lung cancer (NSCLC). RESULTS:The combined analysis identified two independent potentially functional single-nucleotide polymorphisms (SNPs), ELP2 rs7242481G>A and PIAS1 rs1049493T>C, to be significantly associated with NSCLC survival, with a combined hazards ratio (HR) of 0.85 [95% CI= 0.78-0.92, P<0.0001] and 0.87 (0.81-0.93, P<0.0001), respectively. Expression quantitative trait loci analyses showed that the survival-associated ELP2 rs7242481A allele was significantly associated with increased mRNA expression levels of ELP2 in 373 lymphoblastoid cell lines and 369 whole blood samples. The PIAS1 rs1049493C allele was significantly associated with decreased mRNA expression levels of PIAS1 in 383 normal lung tissues and 369 whole blood samples. CONCLUSIONS:Genetic variants of IFNγ signaling genes are potential prognostic markers for NSCLC survival, likely through modulating the expression of key genes involved in host immune response. IMPACT:Once validated, these variants could be useful predictors of NSCLC survival.Item Open Access Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer.(International journal of cancer, 2020-02-18) Tang, Dongfang; Zhao, Yu C; Liu, Hongliang; Luo, Sheng; Clarke, Jeffrey M; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Gao, Wen; Wei, QingyiThe ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.Item Open Access Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival.(International journal of cancer, 2019-04) Qian, Danwen; Liu, Hongliang; Wang, Xiaomeng; Ge, Jie; Luo, Sheng; Patz, Edward F; Moorman, Patricia G; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiThe complement system plays an important role in the innate and adaptive immunity, complement components mediate tumor cytolysis of antibody-based immunotherapy, and complement activation in the tumor microenvironment may promote tumor progression or inhibition, depending on the mechanism of action. In the present study, we conducted a two-phase analysis of two independently published genome-wide association studies (GWASs) for associations between genetic variants in a complement-related immunity gene-set and overall survival of non-small cell lung cancer (NSCLC). The GWAS dataset from Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial was used as the discovery, and multivariate Cox proportional hazards regression with false-positive report probability for multiple test corrections were performed to evaluate associations between 14,699 single-nucleotide polymorphisms (SNPs) in 111 genes and survival of 1,185 NSCLC patients. The identified significant SNPs in a single-locus analysis were further validated with 984 NSCLC patients in the GWAS dataset from the Harvard Lung Cancer Susceptibility (HLCS) Study. The results showed that two independent, potentially functional SNPs in two genes (VWF rs73049469 and ITGB2 rs3788142) were significantly associated with NSCLC survival, with a combined hazards ratio (HR) of 1.22 [95% confidence interval (CI) = 1.07-1.40, P = 0.002] and 1.16 (1.07-1.27, 6.45 × 10-4 ), respectively. Finally, we performed expression quantitative trait loci (eQTL) analysis and found that survival-associated genotypes of VWF rs73049469 were also significantly associated with mRNA expression levels of the gene. These results indicated that genetic variants of the complement-related immunity genes might be predictors of NSCLC survival, particularly for the short-term survival, possibly by modulating the expression of genes involved in the host immunity.Item Open Access Potentially functional genetic variants in the TNF/TNFR signaling pathway genes predict survival of patients with non-small cell lung cancer in the PLCO cancer screening trial.(Molecular carcinogenesis, 2019-04-15) Guo, Yi; Feng, Yun; Liu, Hongliang; Luo, Sheng; Clarke, Jeffrey W; Moorman, Patricia G; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiThe tumor necrosis factor (TNF)/TNF receptor (TNFR) pathway is known to influence survival of patients with cancer. We hypothesize that single nucleotide polymorphisms (SNPs) in the TNF/TNFR pathway genes related to apoptosis are associated with survival of patients with non-small cell lung cancer (NSCLC). We used 1185 patients with NSCLC in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial and 984 patients with NSCLC in the Harvard Lung Cancer Susceptibility Study as the discovery and validation datasets, respectively. We selected 6788 SNPs in 71 genes in the TNF/TNFR signaling pathway and extracted their genotyping data from the PLCO genowide-association study (GWAS) dataset. We performed Cox proportional hazards regression analysis to evaluate associations between the identified SNPs and survival and validated the significant SNPs, which were further analyzed for their functional relevance. We found that genotypes of two validated SNPs, IKBKAP rs4978754 CT + TT and TNFRSF1B rs677844 TC + CC, as well as their combined genotypes predicted a better overall survival (P = 0.004, 0.002 and <0.001, respectively). These two validated SNPs were predicted by the RegulomeDB score to be potentially functional. In addition, IKBKAP mRNA expression levels were significantly higher, while TNFRSF1B mRNA expression levels were significantly lower in lung cancer tissues than in adjacent normal tissues (P < 0.001). The Cancer Genome Atlas (TCGA)-based expression quantitative trait loci analysis showed that IKBKAP rs4978754 and TNFRSF1B rs677844 genotypes were significantly associated with their corresponding mRNA expression levels in lung cancer tissues in a recessive model (P = 0.035 and 0.045, respectively). Therefore, we identified two potentially functional SNPs (IKBKAP rs4978754 C > T and TNFRSF1B rs677844 T > C) to be associated with survival of patients with NSCLC.Item Open Access Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival.(Cancer immunology, immunotherapy : CII, 2021-03-02) Yang, Sen; Tang, Dongfang; Zhao, Yu Chen; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wang, Qiming; Wei, QingyiBackground
Cellular immunity against tumor cells is highly dependent on antigen presentation by major histocompatibility complex class I (MHC-I) molecules. However, few published studies have investigated associations between functional variants of MHC-I-related genes and clinical outcomes of lung cancer patients.Methods
We performed a two-phase Cox proportional hazards regression analysis by using two previously published genome-wide association studies to evaluate associations between genetic variants in the MHC-I-related gene set and the survival of non-small cell lung cancer (NSCLC) patients, followed by expression quantitative trait loci analysis.Results
Of the 7811 single-nucleotide polymorphisms (SNPs) in 89 genes of 1185 NSCLC patients in the discovery dataset of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, 24 SNPs remained statistically significant after validation in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. In a multivariate stepwise Cox model, three independent functional SNPs (ERAP1 rs469783 T > C, PSMF1 rs13040574 C > A and NCF2 rs36071574 G > A) remained significant with an adjusted hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.77-0.89, P = 8.0 × 10-7], 0.86 (0.80-0.93, P = 9.4 × 10-5) and 1.31 (1.11-1.54, P = 0.001) for overall survival (OS), respectively. Further combined genotypes revealed a poor survival in a dose-response manner in association with the number of unfavorable genotypes (Ptrend < 0.0001 and 0.0002 for OS and disease-specific survival, respectively). Also, ERAP1 rs469783C and PSMF1 rs13040574A alleles were associated with higher mRNA expression levels of their genes.Conclusion
These potentially functional SNPs of the MHC-I-related genes may be biomarkers for NSCLC survival, possibly through modulating the expression of corresponding genes.