Browsing by Author "Shende, V"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A complete knot invariant from contact homologyEkholm, T; Ng, L; Shende, VWe construct an enhanced version of knot contact homology, and show that we can deduce from it the group ring of the knot group together with the peripheral subgroup. In particular, it completely determines a knot up to smooth isotopy. The enhancement consists of the (fully noncommutative) Legendrian contact homology associated to the union of the conormal torus of the knot and a disjoint cotangent fiber sphere, along with a product on a filtered part of this homology. As a corollary, we obtain a new, holomorphic-curve proof of a result of the third author that the Legendrian isotopy class of the conormal torus is a complete knot invariant. Furthermore, we relate the holomorphic and sheaf approaches via calculations of partially wrapped Floer homology in the spirit of [BEE12].Item Open Access Augmentations are SheavesNg, L; Rutherford, D; Shende, V; Sivek, S; Zaslow, EWe show that the set of augmentations of the Chekanov-Eliashberg algebra of a Legendrian link underlies the structure of a unital A-infinity category. This differs from the non-unital category constructed in [BC], but is related to it in the same way that cohomology is related to compactly supported cohomology. The existence of such a category was predicted by [STZ], who moreover conjectured its equivalence to a category of sheaves on the front plane with singular support meeting infinity in the knot. After showing that the augmentation category forms a sheaf over the x-line, we are able to prove this conjecture by calculating both categories on thin slices of the front plane. In particular, we conclude that every augmentation comes from geometry.Item Open Access The cardinality of the augmentation category of a Legendrian link(Mathematical Research Letters, 2017) Ng, L; Rutherford, D; Shende, V; Sivek, SWe introduce a notion of cardinality for the augmentation category associated to a Legendrian knot or link in standard contact R3. This ℓhomotopy cardinality' is an invariant of the category and allows for a weighted count of augmentations, which we prove to be determined by the ruling polynomial of the link. We present an application to the augmentation category of doubly Lagrangian slice knots.