Browsing by Author "Shibata, Yoichiro"
Results Per Page
Sort Options
Item Open Access Comparative Serum Challenges Show Divergent Patterns of Gene Expression and Open Chromatin in Human and Chimpanzee.(Genome biology and evolution, 2018-03) Pizzollo, Jason; Nielsen, William J; Shibata, Yoichiro; Safi, Alexias; Crawford, Gregory E; Wray, Gregory A; Babbitt, Courtney CHumans experience higher rates of age-associated diseases than our closest living evolutionary relatives, chimpanzees. Environmental factors can explain many of these increases in disease risk, but species-specific genetic changes can also play a role. Alleles that confer increased disease susceptibility later in life can persist in a population in the absence of selective pressure if those changes confer positive adaptation early in life. One age-associated disease that disproportionately affects humans compared with chimpanzees is epithelial cancer. Here, we explored genetic differences between humans and chimpanzees in a well-defined experimental assay that mimics gene expression changes that happen during cancer progression: A fibroblast serum challenge. We used this assay with fibroblasts isolated from humans and chimpanzees to explore species-specific differences in gene expression and chromatin state with RNA-Seq and DNase-Seq. Our data reveal that human fibroblasts increase expression of genes associated with wound healing and cancer pathways; in contrast, chimpanzee gene expression changes are not concentrated around particular functional categories. Chromatin accessibility dramatically increases in human fibroblasts, yet decreases in chimpanzee cells during the serum response. Many regions of opening and closing chromatin are in close proximity to genes encoding transcription factors or genes involved in wound healing processes, further supporting the link between changes in activity of regulatory elements and changes in gene expression. Together, these expression and open chromatin data show that humans and chimpanzees have dramatically different responses to the same physiological stressor, and how a core physiological process can evolve quickly over relatively short evolutionary time scales.Item Open Access Genome-wide Cross-species Analysis Linking Open Chromatin, Differential Expression and Positive Selection(2012) Shibata, YoichiroDeciphering the molecular mechanisms driving the phenotypic differences between humans and primates remains a daunting challenge. Mutations found in protein coding DNA alone has not been able to explain these phenotypic differences. The hypothesis that mutations in non-coding regulatory DNA are responsible for altered gene expression leading to these phenotypic changes has now been widely supported by differential gene expression experiments. Yet, comprehensive identification of all regulatory DNA elements across different species has not been performed. To identify the genetic source of regulatory change, genome-wide DNaseI hypersensitivity assays, marking all types of active gene regulatory element sites, were performed in human, chimpanzee, macaque, orangutan, and mouse. Many DNaseI hypersensitive (DHS) sites were conserved among all 5 species, but we also identified hundreds of novel human- and chimpanzee-specific DHS gains and losses that showed signatures of positive selection. Species-specific DHS gains were enriched in distal non-coding regions, associated with active histone modifications, and positively correlated with increased expression - indicating that these are likely to be functioning as enhancers. Comparison to mouse DHS data indicate that human or chimpanzee DHS gains are likely to have been a result of single events that occurred primarily on the human- or chimpanzee-specific branch, respectively. In contrast, DHS losses are associated with events that occurred on multiple branches. At least one mechanism contributing to DHS gains and losses are species-specific variants that lead to sequence changes at transcription factor binding motifs, affecting the binding of TFs such as AP1. These variants were functionally verified by DNase footprinting and ChIP-qPCR analyses.
Item Open Access Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.(Scientific reports, 2016-09-27) Feger, Bryan J; Thompson, J Will; Dubois, Laura G; Kommaddi, Reddy P; Foster, Matthew W; Mishra, Rajashree; Shenoy, Sudha K; Shibata, Yoichiro; Kidane, Yared H; Moseley, M Arthur; Carnell, Lisa S; Bowles, Dawn EOn Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy.