Browsing by Author "Silvestri, S"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Non-neutral vegetation dynamics.(PLoS One, 2006-12-20) Marani, M; Zillio, T; Belluco, E; Silvestri, S; Maritan, AThe neutral theory of biodiversity constitutes a reference null hypothesis for the interpretation of ecosystem dynamics and produces relatively simple analytical descriptions of basic system properties, which can be easily compared to observations. On the contrary, investigations in non-neutral dynamics have in the past been limited by the complexity arising from heterogeneous demographic behaviours and by the relative paucity of detailed observations of the spatial distribution of species diversity (beta-diversity): These circumstances prevented the development and testing of explicit non-neutral mathematical descriptions linking competitive strategies and observable ecosystem properties. Here we introduce an exact non-neutral model of vegetation dynamics, based on cloning and seed dispersal, which yields closed-form characterizations of beta-diversity. The predictions of the non-neutral model are validated using new high-resolution remote-sensing observations of salt-marsh vegetation in the Venice Lagoon (Italy). Model expressions of beta-diversity show a remarkable agreement with observed distributions within the wide observational range of scales explored (5 x 10(-1) m divided by 10(3) m). We also consider a neutral version of the model and find its predictions to be in agreement with the more limited characterization of beta-diversity typical of the neutral theory (based on the likelihood that two sites be conspecific or heterospecific, irrespective of the species). However, such an agreement proves to be misleading as the recruitment rates by propagules and by seed dispersal assumed by the neutral model do not reflect known species characteristics and correspond to averages of those obtained under the more general non-neutral hypothesis. We conclude that non-neutral beta-diversity characterizations are required to describe ecosystem dynamics in the presence of species-dependent properties and to successfully relate the observed patterns to the underlying processes.Item Open Access Quantification of Peat Thickness and Stored Carbon at the Landscape Scale in Tropical Peatlands: A Comparison of Airborne Geophysics and an Empirical Topographic Method(Journal of Geophysical Research: Earth Surface, 2019-12-01) Silvestri, S; Knight, R; Viezzoli, A; Richardson, CJ; Anshari, GZ; Dewar, N; Flanagan, N; Comas, X©2019. The Authors. Peatlands play a key role in the global carbon cycle, sequestering and releasing large amounts of carbon. Despite their importance, a reliable method for the quantification of peatland thickness and volume is still missing, particularly for peat deposits located in the tropics given their limited accessibility, and for scales of measurement representative of peatland environments (i.e., of hundreds of km2). This limitation also prevents the accurate quantification of the stored carbon as well as future greenhouse gas emissions due to ongoing peat degradation. Here we present the results obtained using the airborne electromagnetic (AEM) method, a geophysical surveying tool, for peat thickness detection at the landscape scale. Based on a large amount of data collected on an Indonesian peatland, our results show that the AEM method provides a reliable and accurate 3-D model of peatlands, allowing the quantification of their volume and carbon storage. A comparison with the often used empirical topographic approach, which is based on an assumed correlation between peat thickness and surface topography, revealed larger errors across the landscape associated with the empirical approach than the AEM method when predicting the peat thickness. As a result, the AEM method provides higher estimates (22%) of organic carbon pools than the empirical method. We show how in our case study the empirical method tends to underestimate the peat thickness due to its inability to accurately detect the large variability in the elevation of the peat/mineral substrate interface, which is better quantified by the AEM method.Item Open Access Remote sensing for optimal estimation of water temperature dynamics in shallow tidal environments(Remote Sensing, 2020-01-01) Pivato, M; Carniello, L; Viero, DP; Soranzo, C; Defina, A; Silvestri, S© 2019 by the authors. Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and considering the highly dynamic behavior of these systems, methods for the continuous and spatially distributed retrieval of water quality are becoming vital for their correct monitoring and management. Water temperature is certainly one of the most important drivers that influence the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are observed through point measurements carried out during field campaigns or through a network of sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient for process understanding, model development/validation, or integrated assessment. Here, we develop and apply an integrated approach for water temperature monitoring in a shallow lagoon which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote sensing information to constrain large-scale patterns of water temperature and high-frequency in situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat transport model is then used to propagate the state of the system forward in time between subsequent remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ measurements high temporal resolution, the model may act a physical interpolator filling the gap intrinsically characterizing the two monitoring techniques.