Browsing by Author "Simmons, Walter N"
Results Per Page
Sort Options
Item Open Access Air Induction Design for Restricted Race Engines(2014) Shami, Constandi JohnThe air induction system is one of the most influential subsystems within the vehicle powertrain for both fuel efficiency and power generation, especially in restricted race engine applications. The primary focus of this investigation is to parameterize the air induction system into three components, namely the diffuser, plenum, and runners, and to determine the internal geometric parameters most dominant for power generation with the goal of designing an air induction system to generate maximum performance for a given restricted internal combustion engine. This was accomplished through theoretical calculations; engine simulation and modeling using GT-Power; computational fluid dynamics modeling using SolidWorks Flow Simulation; and finally building a prototype of the final configuration for experimentation on an engine dynamometer. It was determined through these simulations that a symmetric air induction design featuring a 6.0° diffuser angle, 0.54L plenum volume, and 5" runner lengths proved to sustain an evenly distributed 19% greater mass flow rate than the previous design, generating a 4.8% increase in power output and sustaining 95% of peak torque output for 1000RPM longer than the previous design. Experimentally, the dynamometer test sessions with normalized results for power and torque generation versus engine speed validated the trends predicted by the engine simulation and CFD analysis for an overall holistic investigation into air induction system design.
Item Open Access Controls Strategy and Implementation for Supercritical Water Oxidation Reaction(2014) Hockman, JeremyDue to the complexity of the reaction, waste sanitation using supercritical water oxidation controls requires a high level of strategy and design. A programmable logic controller was constructed using an Allen-Bradley 1756 ControlLogix controller and other industrial control components. This controller was chosen for its robustness and ease of integration with a multifaceted process. The supercritical water oxidation reaction has nearly fifty inputs and multiple outputs that are used to monitor and control the entire process. The responsibility of the control system ranges from process security and safety to adjusting mass flows of critical reaction components in order to reach a stoichiometric reaction balance. The controls system uses a sophisticated series of proportional integral derivative (PID) controllers to adjust the various control parameters such as reactor temperatures and reactant mass flows. Using a PID tuning method known as the Ziegler-Nichols method, the supercritical water oxidation reaction can be tuned and controlled to run as a self-sustaining waste sanitation unit.
Item Open Access Preparation of Boron by Pyrolytic Decomposition of Boron Tribromide(2016) Lim, Emily ThomasThe national shortage of helium-3 has made it critical to develop an alternative to helium-3 neutron detectors. Boron-10, if it could be produced in macroscopic alpha-rhombohedral crystalline form, would be a viable alternative to helium-3. This work has determined the critical parameters needed for the preparation of alpha-rhombohedral boron by the pyrolytic decomposition of boron tribromide on tantalum wire. The primary parameters that must be met are wire temperature and feedstock purity. The minimum purity level for boron tribromide was determined to be 99.999% and it has been found that alpha-rhombohedral boron cannot be produced using 99.99% boron tribromide. The decomposition temperature was experimentally tested between 830°C and 1000°C. Alpha-rhombohedral boron was found at temperatures between 950°C and 1000°C using 99.999% pure boron tribromide.
Item Open Access Using additive manufacturing to optimize FLiBe coolant blanket in Fusion Reactors(2017) Fry, VincentFusion reactors have often been hailed as the holy grail of clean energy generation, though a power-generating reactor has never been built due to a multitude of limiting factors. One such factor is the immense 12-15 MW/m2 heat fluxes experienced by the inner wall of the reactor. Multiple groups have proposed the use of tungsten swirl tubes to withstand the heat generated within the reactor core. The primary focus of this investigation is to parameterize this ‘first wall’ interior structure to determine the highest achievable heat transfer coefficient given the many tungsten configurations enabled via additive manufacturing. Two general tube structures were considered: an orthogonal three-dimensional mesh of various diameters and spacings, as well as a swirl tube geometry with varying ‘tape’ thicknesses. The coolant liquid proposed is FLiBe (2LiF-BeF2) due to its high specific heat capacity as well as its ability to breed tritium, the fuel for the reactor.
This was accomplished using theoretical calculations; computational fluid dynamics and conjugate heat transfer simulations in ANSYS Workbench; as well as an experimental setup to confirm tube pressure drop along the pipe. It was determined that heat transfer coefficients between upwards of 60,000 W/m2K were readily achievable, keeping the first wall temperature around 1300 K. A multitude of designs proved to be feasible given the pumping power restrictions, though the suggested design going forward is a swirl tube with 2 mm ‘tape’ thickness and 3 m/s inlet velocity. Simulated pressure drop with water was accurate to within 30% of experimentally measured values, giving confidence in the credibility of the results.
Item Open Access X-Ray Diffraction Study of Boron Produced by Pyrolysis of Boron Tribromide(2016) Rosenberg, DavidThe goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C – 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that further improvements to the test apparatus and test conditions (for example, higher purity/cleanliness) may be necessary to optimize the boron deposition. Although alpha-rhombohedral boron crystals of large size were not achieved, this research was successful in (a) developing a pyrolysis apparatus and test procedure that can serve as a platform for future testing, (b) determining reaction temperatures at which alpha-rhombohedral boron can form, and (c) developing a consistent process for analyzing the boron deposits and determining their composition. Further experimentation is necessary to achieve a pyrolysis apparatus and test procedure that can yield large alpha-rhombohedral boron crystals with consistency.