Browsing by Author "Sinclair, S Michael"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation.(J Control Release, 2013-10-10) Sinclair, S Michael; Bhattacharyya, Jayanta; McDaniel, Jonathan R; Gooden, David M; Gopalaswamy, Ramesh; Chilkoti, Ashutosh; Setton, Lori ARadiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.Item Open Access Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist.(Spine, 2011-07) Sinclair, S Michael; Shamji, Mohammed F; Chen, Jun; Jing, Liufang; Richardson, William J; Brown, Christopher R; Fitch, Robert D; Setton, Lori AStudy design
The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro.Objective
To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro.Summary of background data
TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown.Methods
IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells.Results
Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively.Conclusion
Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.Item Open Access Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells(2011-01-01) Allen, Kyle D; Chen, Jun; Fitch, Robert; Gabr, Mostafa A; Helbling, Antonia R; Jing, Liufang; Richardson, William J; Setton, Lori A; Shamji, Mohammed F; Sinclair, S MichaelInterleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ and TNFα in intervertebral disc pathology. Cells were isolated from anulus fibrosus and nucleus pulposus tissues of patients undergoing surgery for intervertebral disc degeneration or scoliosis. The production of inflammatory mediators, nitric oxide (NOx), prostaglandin E2 (PGE2) and interleukin-6 (IL-6), as well as intercellular adhesion molecule (ICAM-1) expression, were quantified for cultured cells following exposure to IL-17, IFNγ and TNFα. Intervertebral disc cells exposed to IL-17, IFNγ or TNFα showed a remarkable increase in inflammatory mediator release and ICAM-1 expression (GLM and ANOVA, p<0.05). Addition of IFNγ or TNFα to IL-17 demonstrated a synergistic increase in inflammatory mediator release, and a marked increase in ICAM-1 expression. These findings suggest that IVD cells not only respond with a catabolic phenotype to IL-17 and costimulants IFNγ and TNFα, but also express surface ligands with consequent potential to recruit additional lymphocytes and immune cells to the IVD microenvironment. IL-17 may be an important regulator of inflammation in the IVD pathologies.Item Open Access Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells.(Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2011-01) Gabr, Mostafa A; Jing, Liufang; Helbling, Antonia R; Sinclair, S Michael; Allen, Kyle D; Shamji, Mohammed F; Richardson, William J; Fitch, Robert D; Setton, Lori A; Chen, JunInterleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ and TNFα in intervertebral disc pathology. Cells were isolated from anulus fibrosus and nucleus pulposus tissues of patients undergoing surgery for intervertebral disc degeneration or scoliosis. The production of inflammatory mediators, nitric oxide (NOx), prostaglandin E2 (PGE2) and interleukin-6 (IL-6), as well as intercellular adhesion molecule (ICAM-1) expression, were quantified for cultured cells following exposure to IL-17, IFNγ, and TNFα. Intervertebral disc cells exposed to IL-17, IFNγ, or TNFα showed a remarkable increase in inflammatory mediator release and ICAM-1 expression (GLM and ANOVA, p < 0.05). Addition of IFNγ or TNFα to IL-17 demonstrated a synergistic increase in inflammatory mediator release, and a marked increase in ICAM-1 expression. These findings suggest that IVD cells not only respond with a catabolic phenotype to IL-17 and costimulants IFNγ and TNFα, but also express surface ligands with consequent potential to recruit additional lymphocytes and immune cells to the IVD microenvironment. IL-17 may be an important regulator of inflammation in the IVD pathologies.Item Open Access Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism.(Arthritis research & therapy, 2011-08-26) Allen, Kyle D; Shamji, Mohammed F; Mata, Brian A; Gabr, Mostafa A; Sinclair, S Michael; Schmitt, Daniel O; Richardson, William J; Setton, Lori ATumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception.Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6.High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1).Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.