Browsing by Author "Smirnov, AI"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Observation of majorana quantum critical behaviour in a resonant level coupled to a dissipative environment(Nature Physics, 2013-01-01) Mebrahtu, HT; Borzenets, IV; Zheng, H; Bomze, YV; Smirnov, AI; Florens, S; Baranger, HU; Finkelstein, GA quantum phase transition is an abrupt change between two distinct ground states of a many-body system, driven by an external parameter. In the vicinity of the quantum critical point (QCP) where the transition occurs, a new phase may emerge that is determined by quantum fluctuations and is very different from either phase. In particular, a conducting system may exhibit non-Fermi-liquid behaviour. Although this scenario is well established theoretically, controllable experimental realizations are rare. Here, we experimentally investigate the nature of the QCP in a simple nanoscale system - a spin-polarized resonant level coupled to dissipative contacts. We fine-tune the system to the QCP, realized exactly on-resonance and when the coupling between the level and the two contacts is symmetric. Several anomalous transport scaling laws are demonstrated, including a striking non-Fermi-liquid scattering rate at the QCP, indicating fractionalization of the resonant level into two Majorana quasiparticles. © 2013 Macmillan Publishers Limited.Item Open Access Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment(Nature Physics, 2013) Mebrahtu, HT; Borzenets, IV; Zheng, H; Bomze, YV; Smirnov, AI; Florens, S; Baranger, HU; Finkelstein, GA quantum phase transition is an abrupt change between two distinct ground states of a many-body system, driven by an external parameter. In the vicinity of the quantum critical point (QCP) where the transition occurs, a new phase may emerge that is determined by quantum fluctuations and is very different from either phase. In particular, a conducting system may exhibit non-Fermi-liquid behaviour. Although this scenario is well established theoretically, controllable experimental realizations are rare. Here, we experimentally investigate the nature of the QCP in a simple nanoscale system-a spin-polarized resonant level coupled to dissipative contacts. We fine-tune the system to the QCP, realized exactly on-resonance and when the coupling between the level and the two contacts is symmetric. Several anomalous transport scaling laws are demonstrated, including a striking non-Fermi-liquid scattering rate at the QCP, indicating fractionalization of the resonant level into two Majorana quasiparticles.Item Open Access Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures.(Physical review letters, 2013-07-09) Borzenets, IV; Coskun, UC; Mebrahtu, HT; Bomze, Yu V; Smirnov, AI; Finkelstein, GWe examine the nature of the transitions between the normal and superconducting branches in superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures (T≲1 K). The relationship between the applied power and the electron temperature was found to be P∝T3, which we argue is consistent with cooling due to electron-phonon interactions.Item Open Access Universal Nonequilibrium I-V Curve at an Interacting Impurity Quantum Critical Point(arXiv, 2016-09) Zhang, G; Chung, C-H; Ke, CT; Lin, C-Y; Mebrahtu, H; Smirnov, AI; Finkelstein, G; Baranger, HUThe nonlinear I-V curve at an interacting quantum critical point (QCP) is typically out of reach theoretically. Here, however, we provide an analytical calculation of the I-V curve at a QCP under nonequilibrium conditions and, furthermore, present experimental results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless resonant level interacting with an ohmic electromagnetic environment. A two channel Kondo like QCP occurs when the level is on resonance and symmetrically coupled to the leads. Though similar to a resonant level in a Luttinger liquid, a key difference enables us to obtain the current at finite temperature and bias: because there are modes that do not initially couple to the environment, an analysis in terms of weak backscattering of non-interacting fermions coupled to a modified environment is possible. Drawing on dynamical Coulomb blockade theory, we then obtain an analytical expression for the nonlinear I-V curve. The agreement between our theoretical and experimental results is remarkable.