Browsing by Author "Smith, Taylor B"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Expanding the Concept of Diagnostic Reference Levels to Noise and Dose Reference Levels in CT.(AJR. American journal of roentgenology, 2019-06-10) Ria, Francesco; Davis, Joseph T; Solomon, Justin B; Wilson, Joshua M; Smith, Taylor B; Frush, Donald P; Samei, EhsanOBJECTIVE. Diagnostic reference levels were developed as guidance for radiation dose in medical imaging and, by inference, diagnostic quality. The objective of this work was to expand the concept of diagnostic reference levels to explicitly include noise of CT examinations to simultaneously target both dose and quality through corresponding reference values. MATERIALS AND METHODS. The study consisted of 2851 adult CT examinations performed with scanners from two manufacturers and two clinical protocols: abdominopelvic CT with IV contrast administration and chest CT without IV contrast administration. An institutional informatics system was used to automatically extract protocol type, patient diameter, volume CT dose index, and noise magnitude from images. The data were divided into five reference patient size ranges. Noise reference level, noise reference range, dose reference level, and dose reference range were defined for each size range. RESULTS. The data exhibited strong dependence between dose and patient size, weak dependence between noise and patient size, and different trends for different manufacturers with differing strategies for tube current modulation. The results suggest size-based reference intervals and levels for noise and dose (e.g., noise reference level and noise reference range of 11.5-12.9 HU and 11.0-14.0 HU for chest CT and 10.1-12.1 HU and 9.4-13.7 HU for abdominopelvic CT examinations) that can be targeted to improve clinical performance consistency. CONCLUSION. New reference levels and ranges, which simultaneously consider image noise and radiation dose information across wide patient populations, were defined and determined for two clinical protocols. The methods of new quantitative constraints may provide unique and useful information about the goal of managing the variability of image quality and dose in clinical CT examinations.Item Open Access Modeling Patient-Informed Liver Contrast Perfusion in Contrast-enhanced Computed Tomography.(J Comput Assist Tomogr, 2020-11) Setiawan, Hananiel; Ria, Francesco; Abadi, Ehsan; Fu, Wanyi; Smith, Taylor B; Samei, EhsanOBJECTIVE: To determine the correlation between patient attributes and contrast enhancement in liver parenchyma and demonstrate the potential for patient-informed prediction and optimization of contrast enhancement in liver imaging. METHODS: The study included 418 chest/abdomen/pelvis computed tomography scans, with 75% to 25% training-testing split. Two regression models were built to predict liver parenchyma contrast enhancement over time: first model (model A) utilized patient attributes (height, weight, sex, age, bolus volume, injection rate, scan times, body mass index, lean body mass) and bolus-tracking data. A second model (model B) only used the patient attributes. Pearson coefficient was used to assess predictive accuracy. RESULTS: Weight- and height-related features were found to be statistically significant predictors (P < 0.05), weight being the strongest. Of the 2 models, model A (r = 0.75) showed greater accuracy than model B (r = 0.42). CONCLUSIONS: Patient attributes can be used to build prediction model for liver parenchyma contrast enhancement. The model can have utility in optimization and improved consistency in contrast-enhanced liver imaging.