Browsing by Author "Smulders, Tom V"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Avian brains and a new understanding of vertebrate brain evolution.(Nat Rev Neurosci, 2005-02) Jarvis, Erich D; Güntürkün, Onur; Bruce, Laura; Csillag, András; Karten, Harvey; Kuenzel, Wayne; Medina, Loreta; Paxinos, George; Perkel, David J; Shimizu, Toru; Striedter, Georg; Wild, J Martin; Ball, Gregory F; Dugas-Ford, Jennifer; Durand, Sarah E; Hough, Gerald E; Husband, Scott; Kubikova, Lubica; Lee, Diane W; Mello, Claudio V; Powers, Alice; Siang, Connie; Smulders, Tom V; Wada, Kazuhiro; White, Stephanie A; Yamamoto, Keiko; Yu, Jing; Reiner, Anton; Butler, Ann B; Avian Brain Nomenclature ConsortiumWe believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.Item Open Access Computational inference of neural information flow networks.(PLoS Comput Biol, 2006-11-24) Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich DDetermining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.Item Open Access Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location.(Neurobiol Learn Mem, 2013-11) Smulders, Tom V; Jarvis, Erich DRepeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli.Item Open Access Revised nomenclature for avian telencephalon and some related brainstem nuclei.(J Comp Neurol, 2004-05-31) Reiner, Anton; Perkel, David J; Bruce, Laura L; Butler, Ann B; Csillag, András; Kuenzel, Wayne; Medina, Loreta; Paxinos, George; Shimizu, Toru; Striedter, Georg; Wild, Martin; Ball, Gregory F; Durand, Sarah; Güntürkün, Onur; Lee, Diane W; Mello, Claudio V; Powers, Alice; White, Stephanie A; Hough, Gerald; Kubikova, Lubica; Smulders, Tom V; Wada, Kazuhiro; Dugas-Ford, Jennifer; Husband, Scott; Yamamoto, Keiko; Yu, Jing; Siang, Connie; Jarvis, Erich D; Avian Brain Nomenclature ForumThe standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.orgItem Open Access VOCALIZATIONS AND ASSOCIATED BEHAVIORS OF THE SOMBRE HUMMINGBIRD (APHANTOCHROA CIRRHOCHLORIS) AND THE RUFOUS-BREASTED HERMIT (GLAUCIS HIRSUTUS).(Auk, 2006-10) Ferreira, Adriana RJ; Smulders, Tom V; Sameshima, Koichi; Mello, Claudio V; Jarvis, Erich DVocal behavior in tropical hummingbirds is a new area of study. Here, we present findings on the vocalizations and associated behaviors of two species: Sombre Hummingbird (Aphantochroa cirrhochloris) and Rufous-breasted Hermit (Glaucis hirsutus). These are the only hummingbirds in which the brain areas activated by singing have been demonstrated. They are also among the basal species of their respective subfamilies, Trochilinae and Phaethornithinae and, thus, represent early stages in the evolution of hummingbird vocal communication. We found that the two species exhibit distinctive vocalizations and behaviors. Sombre Hummingbird calls had more modulation and were often used during agonistic interactions, whereas Rufous-breasted Hermit calls had higher pitch and purer tones and were produced in less aggressive interactions. Sombre Hummingbird song was highly stereotyped in syllable structure and syntax, whereas Rufous-breasted Hermit song was highly variable. Comparative analysis points to consistent similarities in use of vocalizations by the Sombre Hummingbird and other trochilines, and by the Rufous-breasted Hermit and other phaethornithines. We hypothesize that differences in vocal behavior between hummingbird lineages arise as adaptations to their foraging strategies.