Browsing by Author "Snyder-Mackler, Noah"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Invited Commentary: Integrating Genomics and Social Epidemiology-Analysis of Late-Life Low Socioeconomic Status and the Conserved Transcriptional Response to Adversity.(Am J Epidemiol, 2017-09-01) Belsky, Daniel W; Snyder-Mackler, NoahSocially disadvantaged children face increased morbidity and mortality as they age. Understanding mechanisms through which social disadvantage becomes biologically embedded and devising measurements that can track this embedding are critical priorities for research to address social gradients in health. The analysis by Levine et al. (Am J Epidemiol. 2017;186(5):503-509) of genome-wide gene expression in a subsample of US Health and Retirement Study participants suggests important new directions for the field. Specifically, findings suggest promise in integrating gene expression data into population studies and provide further evidence for the conserved transcriptional response to adversity as a marker of biological embedding of social disadvantage. The study also highlights methodological issues related to the analysis of gene expression data and social gradients in health and a need to examine the conserved transcriptional response to adversity alongside other proposed measurements of biological embedding. Looking to the future, advances in genome science are opening new opportunities for sociogenomic epidemiology.Item Open Access Social determinants of health and survival in humans and other animals.(Science (New York, N.Y.), 2020-05) Snyder-Mackler, Noah; Burger, Joseph Robert; Gaydosh, Lauren; Belsky, Daniel W; Noppert, Grace A; Campos, Fernando A; Bartolomucci, Alessandro; Yang, Yang Claire; Aiello, Allison E; O'Rand, Angela; Harris, Kathleen Mullan; Shively, Carol A; Alberts, Susan C; Tung, JennyThe social environment, both in early life and adulthood, is one of the strongest predictors of morbidity and mortality risk in humans. Evidence from long-term studies of other social mammals indicates that this relationship is similar across many species. In addition, experimental studies show that social interactions can causally alter animal physiology, disease risk, and life span itself. These findings highlight the importance of the social environment to health and mortality as well as Darwinian fitness-outcomes of interest to social scientists and biologists alike. They thus emphasize the utility of cross-species analysis for understanding the predictors of, and mechanisms underlying, social gradients in health.