Browsing by Author "Soerensen, Mette"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals.(Exp Gerontol, 2014-09) Nygaard, Marianne; Lindahl-Jacobsen, Rune; Soerensen, Mette; Mengel-From, Jonas; Andersen-Ranberg, Karen; Jeune, Bernard; Vaupel, James W; Tan, Qihua; Christiansen, Lene; Christensen, KaareGene variants found to associate with human longevity in one population rarely replicate in other populations. The lack of consistent findings may partly be explained by genetic heterogeneity among long-lived individuals due to cohort differences in survival probability. In most high-income countries the probability of reaching e.g. 100years increases by 50-100% per decade, i.e. there is far less selection in more recent cohorts. Here we investigate the cohort specificity of variants in the APOE and FOXO3A genes by comparing the frequencies of the APOE ε4 allele and the minor alleles of two variants in FOXO3A at age 95+ and 100+ in 2712 individuals from the genetically homogeneous Danish birth cohorts 1895-96, 1905, 1910-11, and 1915. Generally, we find a decrease in the allele frequencies of the investigated APOE and FOXO3A variants in individuals from more recent birth cohorts. Assuming a recessive model, this negative trend is significant in 95+ year old individuals homozygous for the APOE ε4 allele (P=0.026) or for the FOXO3A rs7762395 minor allele (P=0.048). For the APOE ε4 allele, the significance is further strengthened when restricting to women (P=0.006). Supportive, but non-significant, trends are found for two of the three tested variants in individuals older than 100years. Altogether, this indicates that cohort differences in selection pressure on survival to the highest ages are reflected in the prevalence of longevity gene variants. Although the effect seems to be moderate, our findings could have an impact on genetic studies of human longevity.Item Open Access Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity.(Age (Dordr), 2013-04) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Suchiman, H Eka D; Jacobsen, Rune; McGue, Matt; Stevnsner, Tinna; Bohr, Vilhelm A; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; Christiansen, LeneIn this study, we investigated 102 single-nucleotide polymorphisms (SNPs) covering the common genetic variation in 16 genes recurrently regarded as candidates for human longevity: APOE; ACE; CETP; HFE; IL6; IL6R; MTHFR; TGFB1; APOA4; APOC3; SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. In a case-control study of 1,089 oldest-old (ages 92-93) and 736 middle-aged Danes, the minor allele frequency (MAF) of rs769449 (APOE) was significantly decreased in the oldest-old, while the MAF of rs9923854 (CETP) was significantly enriched. These effects were supported when investigating 1,613 oldest-old (ages 95-110) and 1,104 middle-aged Germans. rs769449 was in modest linkage equilibrium (R (2)=0.55) with rs429358 of the APOE-ε4 haplotype and adjusting for rs429358 eliminated the association of rs769449, indicating that the association likely reflects the well-known effect of rs429358. Gene-based analysis confirmed the effects of variation in APOE and CETP and furthermore pointed to HSPA14 as a longevity gene. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes, only one SNP, rs2069827 (IL6), was borderline significantly associated with survival from age 92 (P-corrected=0.064). This advantageous effect of the minor allele was supported when investigating a Dutch longitudinal cohort (N=563) of oldest-old (age 85+). Since rs2069827 was located in a putative transcription factor binding site, quantitative RNA expression studies were conducted. However, no difference in IL6 expression was observed between rs2069827 genotype groups. In conclusion, we here support and expand the evidence suggesting that genetic variation in APOE, CETP, and IL6, and possible HSPA14, is associated with human longevity.Item Open Access Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.(Exp Gerontol, 2012-05) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H Eka D; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; McGue, Matt; Christiansen, LeneHere we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.