Browsing by Author "Song, Allen W"
Results Per Page
Sort Options
Item Open Access Association between increased magnetic susceptibility of deep gray matter nuclei and decreased motor function in healthy adults.(Neuroimage, 2015-01-15) Li, Wei; Langkammer, Christian; Chou, Ying-Hui; Petrovic, Katja; Schmidt, Reinhold; Song, Allen W; Madden, David J; Ropele, Stefan; Liu, ChunleiIn the human brain, iron is more prevalent in gray matter than in white matter, and deep gray matter structures, particularly the globus pallidus, putamen, caudate nucleus, substantia nigra, red nucleus, and dentate nucleus, exhibit especially high iron content. Abnormally elevated iron levels have been found in various neurodegenerative diseases. Additionally, iron overload and related neurodegeneration may also occur during aging, but the functional consequences are not clear. In this study, we explored the correlation between magnetic susceptibility--a surrogate marker of brain iron--of these gray matter structures with behavioral measures of motor and cognitive abilities, in 132 healthy adults aged 40-83 years. Latent variables corresponding to manual dexterity and executive functions were obtained using factor analysis. The factor scores for manual dexterity declined significantly with increasing age. Independent of gender, age, and global cognitive function, increasing magnetic susceptibility in the globus pallidus and red nuclei was associated with decreasing manual dexterity. This finding suggests the potential value of magnetic susceptibility, a non-invasive quantitative imaging marker of iron, for the study of iron-related brain function changes.Item Open Access BOLD signal compartmentalization based on the apparent diffusion coefficient.(Magn Reson Imaging, 2002-09) Song, Allen W; Fichtenholtz, Harlan; Woldorff, MartyFunctional MRI (fMRI) can detect blood oxygenation level dependent (BOLD) hemodynamic responses secondary to neuronal activity. The most commonly used method for detecting fMRI signals is the gradient-echo echo-planar imaging (EPI) technique because of its sensitivity and speed. However, it is generally believed that a significant portion of these signals arises from large veins, with additional contribution from the capillaries and parenchyma. Early experiments using diffusion-weighted gradient-echo EPI have suggested that intra-voxel incoherent motion (IVIM) weighting inherent in the sequence can selectively attenuate contributions from different vessels based on the differences in the mobility of the blood within them. In the present study, we used similar approach to characterize the apparent diffusion coefficient (ADC) distribution within the activated areas of BOLD contrast. It is shown that the voxel values of the ADCs obtained from this technique can infer various vascular contributions to the BOLD signal.Item Open Access Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy.(NeuroImage. Clinical, 2015-01-09) Englander, Zoë A; Sun, Jessica; Laura Case; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen WCerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.Item Open Access Correcting Motion Artifacts in Multi-Shot Diffusion-Weighted EPI Using Iterative Phase Cycling(2012) Guhaniyogi, ShayanDiffusion-weighted MRI (DWI) is an essential tool in clinical applications such as detecting ischemic stroke, and in research applications studying neuronal connectivity in the brain. Diffusion-weighted imaging with multi-shot echo-planar acquisition (DWEPI) offers several advantages over single-shot EPI, including improved spatial resolution and reduced off-resonance and susceptibility artifacts. However a major limitation of multi-shot DWEPI is its sensitivity to patient motion during the application of diffusion gradients; the motion generates phase errors which vary from shot to shot, resulting in artifacts in the reconstructed image.
Most current methods for correcting motion-induced artifacts involve the use of navigator echoes to estimate the shot-to-shot phase errors. Accurate navigator information comes at the expense of increased scan times however, which is generally undesirable. The aim of this study is to therefore develop and demonstrate the use of an alternative phase estimation technique, iterative phase-cycling, as a new method to correct motion artifacts in DWI without the use of navigators. The developed method involves an iterative column by column estimation of phase errors in the aliased image and reconstruction of an artifact free image using the estimated errors.
In this study the technique was applied to correct artifacts in simulated images, hybrid-simulated images, and true four-shot DWEPI images. Accuracy of the phase-cycling method was evaluated by computing residual image errors and ghost-to-noise ratios after correction. The efficiency of phase-cycling was evaluated by recording computation times of the correction process. Multiple optimization techniques were developed and used in the experiments, and the accuracy/efficiency of these techniques were also assessed.
Results of the experiments demonstrated the ability of phase-cycling to greatly reduce motion-induced artifacts in multi-shot DWEPI at reasonable computation times. The phase-cycling model used in this study accurately estimated linear and nonlinear errors along the frequency encoding direction and linear errors along the phase encoding direction. An additional mathematical framework is presented illustrating the potential of phase-cycling to correct nonlinear errors along the phase encoding direction in future work.
The study establishes the developed technique as a unique and effective method for correcting motion artifacts in DWEPI without the cost of increased scan times.
Item Open Access Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.(Biomed Res Int, 2015) Truong, Trong-Kha; Song, Allen W; Chen, Nan-KueiIn most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.Item Open Access Cortical iron mediates age-related decline in fluid cognition.(Human brain mapping, 2022-02) Howard, Cortney M; Jain, Shivangi; Cook, Angela D; Packard, Lauren E; Mullin, Hollie A; Chen, Nan-Kuei; Liu, Chunlei; Song, Allen W; Madden, David JBrain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.Item Open Access Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease.(Cerebral cortex (New York, N.Y. : 1991), 2024-01) Merenstein, Jenna L; Zhao, Jiayi; Overson, Devon K; Truong, Trong-Kha; Johnson, Kim G; Song, Allen W; Madden, David JIn addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.Item Open Access Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan.(Human Brain Mapping, 2014-06) Li, Wei; Wu, Bing; Batrachenko, Anastasia; Bancroft-Wu, Vivian; Morey, Rajendra A; Shashi, Vandana; Langkammer, Christian; De Bellis, Michael D; Ropele, Stefan; Song, Allen W; Liu, ChunleiAs indicated by several recent studies, magnetic susceptibility of the brain is influenced mainly by myelin in the white matter and by iron deposits in the deep nuclei. Myelination and iron deposition in the brain evolve both spatially and temporally. This evolution reflects an important characteristic of normal brain development and ageing. In this study, we assessed the changes of regional susceptibility in the human brain in vivo by examining the developmental and ageing process from 1 to 83 years of age. The evolution of magnetic susceptibility over this lifespan was found to display differential trajectories between the gray and the white matter. In both cortical and subcortical white matter, an initial decrease followed by a subsequent increase in magnetic susceptibility was observed, which could be fitted by a Poisson curve. In the gray matter, including the cortical gray matter and the iron-rich deep nuclei, magnetic susceptibility displayed a monotonic increase that can be described by an exponential growth. The rate of change varied according to functional and anatomical regions of the brain. For the brain nuclei, the age-related changes of susceptibility were in good agreement with the findings from R2* measurement. Our results suggest that magnetic susceptibility may provide valuable information regarding the spatial and temporal patterns of brain myelination and iron deposition during brain maturation and ageing.Item Open Access Differentiating sensitivity of post-stimulus undershoot under diffusion weighting: implication of vascular and neuronal hierarchy.(PLoS One, 2008-08-13) Harshbarger, Todd B; Song, Allen WThe widely used blood oxygenation level dependent (BOLD) signal during brain activation, as measured in typical fMRI methods, is composed of several distinct phases, the last of which, and perhaps the least understood, is the post-stimulus undershoot. Although this undershoot has been consistently observed, its hemodynamic and metabolic sources are still under debate, as evidences for sustained blood volume increases and metabolic activities have been presented. In order to help differentiate the origins of the undershoot from vascular and neuronal perspectives, we applied progressing diffusion weighting gradients to investigate the BOLD signals during visual stimulation. Three distinct regions were established and found to have fundamentally different properties in post-stimulus signal undershoot. The first region, with a small but focal spatial extent, shows a clear undershoot with decreasing magnitude under increasing diffusion weighting, which is inferred to represent intravascular signal from larger vessels with large apparent diffusion coefficients (ADC), or high mobility. The second region, with a large continuous spatial extent in which some surrounds the first region while some spreads beyond, also shows a clear undershoot but no change in undershoot amplitude with progressing diffusion weighting. This would indicate a source based on extravascular and small vessel signal with smaller ADC, or lower mobility. The third region shows no significant undershoot, and is largely confined to higher order visual areas. Given their intermediate ADC, it would likely include both large and small vessels. Thus the consistent observation of this third region would argue against a vascular origin but support a metabolic basis for the post-stimulus undershoot, and would appear to indicate a lack of sustained metabolic rate likely due to a lower oxygen metabolism in these higher visual areas. Our results are the first, to our knowledge, to suggest that the post-stimulus undershoots have a spatial dependence on the vascular and neuronal hierarchy, and that progressing flow-sensitized diffusion weighting can help delineate these dependences.Item Open Access Diffuse reduction of white matter connectivity in cerebral palsy with specific vulnerability of long range fiber tracts.(NeuroImage. Clinical, 2013-01) Englander, Zoë A; Pizoli, Carolyn E; Batrachenko, Anastasiya; Sun, Jessica; Worley, Gordon; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen WCerebral palsy (CP) is a heterogeneous group of non-progressive motor disorders caused by injury to the developing fetal or infant brain. Although the defining feature of CP is motor impairment, numerous other neurodevelopmental disabilities are associated with CP and contribute greatly to its morbidity. The relationship between brain structure and neurodevelopmental outcomes in CP is complex, and current evidence suggests that motor and developmental outcomes are related to the spatial pattern and extent of brain injury. Given that multiple disabilities are frequently associated with CP, and that there is increasing burden of neurodevelopmental disability with increasing motor severity, global white matter (WM) connectivity was examined in a cohort of 17 children with bilateral CP to test the hypothesis that increased global WM damage will be seen in the group of severely affected (Gross Motor Function Classification Scale (GMFCS) level of IV) as compared to moderately affected (GMFCS of II or III) individuals. Diffusion tensor tractography was performed and the resulting fibers between anatomically defined brain regions were quantified and analyzed in relation to GMFCS levels. Overall, a reduction in total WM connectivity throughout the brain in severe versus moderate CP was observed, including but not limited to regions associated with the sensorimotor system. Our results also show a diffuse and significant reduction in global inter-regional connectivity between severity groups, represented by inter-regional fiber count, throughout the brain. Furthermore, it was also observed that there is a significant difference (p = 0.02) in long-range connectivity in patients with severe CP as compared to those with moderate CP, whereas short-range connectivity was similar between groups. This new finding, which has not been previously reported in the CP literature, demonstrates that CP may involve distributed, network-level structural disruptions.Item Open Access Diffusion Tensor Imaging Biomarkers of Stem Cell Therapy Efficacy in Pediatric Cerebral Palsy(2012) Batrachenko, AnastasiyaCerebral palsy (CP) is a non-progressive sensory-motor disorder and is one of the most costly and debilitating chronic pediatric conditions, affecting 2-3 out of 1000 children in the United States. To better understand the underlying mechanisms that result in the devastating motor deficits in CP patients, quantitative assessment of brain regions and connectivity with respect to the severity of injury is critical. It is generally known that motor control can be largely influenced by the integrity of the corticospinal tract (CST) connecting the primary motor cortex (pre-central gyrus) to the brainstem and the spinal cord. Thus, we further sought to establish CST volume as a sensitive and reliable biomarker that can reveal functional deficit in individual patients through comprehensive quantitative analyses in 29 consented human subjects (1-6 years of age, mean 2.67±1.36 years) diagnosed with hemiplegic, diplegic, or quadriplegic CP. The proportional reduction of bilateral CST volume with increased disease severity was observed for diplegic and quadriplegic patients (i.e. with bilateral motor deficits). Furthermore, CST volume with respect to disease severity in hemiplegic patients (i.e. with unilateral motor deficits) exhibited more complex patterns of asymmetry, revealing evidence for alternative neuromechanisms of motor control, such as compensation and neuronal plasticity by the unaffected hemisphere. In all cases, other diffusion metrics such as fractional anisotropy (FA) and mean diffusivity (MD) within the CST did not display significant correlation with disease severity. It is thus concluded that individual CST volume, accurately derived from DTI tractography, is one of the strongest non-invasive imaging biomarkers which could potentially help understand the differential causes for motor deficits and compensation in bilateral CP. It could also be further adopted to assess the underlying mechanism for functional recovery in individual patients undergoing cellular therapies. In addition to motor disability, numerous other neurodevelopmental differences are associated with CP and contribute greatly to the disease morbidity. Therefore, we further examined global changes in WM connectivity with respect to CP disease severity with a whole brain connectome analysis in a cohort of 18 pediatric patients with bilateral CP. As expected, reduction in overall and mutual connectivities throughout the motor regions, including the primary and supplemental motor areas, basal ganglia, and brainstem, was associated with the extent of primary motor disability. In addition, our results show diffuse and significant reduction in global inter-regional connectivity, measured as fiber volume, throughout the entire brain in relation to disease severity. This novel finding has not been previously reported in the CP literature and brings CP into line with multiple other pediatric neuropsychiatric disorders that are thought to involve network-level structural and/or functional disruptions early in development.
Item Open Access Diffusion tensor imaging of cerebral white matter integrity in cognitive aging.(Biochimica et biophysica acta, 2012-03) Madden, David J; Bennett, Ilana J; Burzynska, Agnieszka; Potter, Guy G; Chen, Nan-Kuei; Song, Allen WIn this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.Item Open Access Diffusion Tensor Imaging of Myelin Water(2011) Avram, Alexandru VladIn recent years, the emergence of diffusion tensor imaging (DTI) has provided a unique means via water diffusional characteristics to investigate the white matter integrity in the human brain, and its impact on neuronal functions. However, since the characterization of white matter integrity using DTI often lacks tissue specificity, most research studies report changes in anisotropy that are not explicitly correlated with particular cellular origins. To improve the utility of DTI in translational neuroimaging, it is critical to develop DTI acquisition techniques that are quantitative and tissue specific.
There are, nevertheless, existing methods for tissue specificity. For example, myelin water images can be generated using multiple echo time (TE) or magnetization transfer techniques. These techniques can detect changes in the concentration of myelin associated markers, but not in their spatial organization. Most white matter pathologies however start with early microstructural changes in the myelin sheaths during which the tissue contents remain similar and are thus not differentiable on a conventional MR image. Thus, the ability to construct a diffusion tensor that is myelin specific can have an immediate impact on our better understanding myelin physiology and pathophysiology during brain development.
Unfortunately, the myelin water signal decays rapidly because of its short transverse relaxation time constant (T2 < 50 ms), especially in DTI experiments where the echo time (TE) can be as large as 100ms. Even in special cases where the TE is shorter, the lack of myelin selectivity in conventional DTI techniques makes assessment of myelin microstructure extremely challenging. Thus we need to develop a DTI methodology that will greatly shorten the TE and allow myelin selectivity.
To address these challenges we have developed innovative DTI acquisition methodologies that can specifically assess myelin microstructural changes in white matter. To preserve more signal from myelin water we used a stimulated echo DTI implementation. In our initial approach we integrated this sequence with a magnetization transfer preparation to achieve additional differentiating sensitization to myelin water and derive a myelin water weighted (MWW) diffusion tensor. Our results indicate that, compared to the conventional DTI, myelin water diffuses along the axis of the fiber, but has the same has larger fractional anisotropy (FA) due to significantly smaller radial diffusivity. The limited specificity of MT and high radio frequency power deposition of MT-DTI restrict its applicability in clinical studies.
To obtain increased myelin specificity we implemented a robust stimulated echo DTI sequence with segmented spiral-out readout trajectory for achieving minimal TE on clinical MRI scanners. To ensure high spatial accuracy throughout the DTI scan we further develop a methodology for inherently and dynamically correcting both motion induced phase errors and off-resonance effects due to magnetic field inhomogeneities (including eddy currents) in the reconstructed image. We the used this technique to conduct an unprecedented experiment in which we collected DTI images at multiple echo times (as short as 18ms) and characterized the dependence of anisotropy on the T2 components including myelin water. The results confirmed the anisotropy characteristics of myelin water found with our initial previous approach.
Building on this new information, we designed a MWW-DTI method based on the simultaneous acquisition of DTI images at two different echo times within clinical practical durations. It is hoped that this new DTI technique sensitized myelin microanatomy will find wide applications in monitoring healthy brain development in pediatric populations, as many developmental brain disorders start with microstructural changes in white matter.
Item Open Access Effect of Autologous Cord Blood Infusion on Motor Function and Brain Connectivity in Young Children with Cerebral Palsy: A Randomized, Placebo-Controlled Trial.(Stem cells translational medicine, 2017-12) Sun, Jessica M; Song, Allen W; Case, Laura E; Mikati, Mohamad A; Gustafson, Kathryn E; Simmons, Ryan; Goldstein, Ricki; Petry, Jodi; McLaughlin, Colleen; Waters-Pick, Barbara; Chen, Lyon W; Wease, Stephen; Blackwell, Beth; Worley, Gordon; Troy, Jesse; Kurtzberg, JoanneCerebral palsy (CP) is a condition affecting young children that causes lifelong disabilities. Umbilical cord blood cells improve motor function in experimental systems via paracrine signaling. After demonstrating safety, we conducted a phase II trial of autologous cord blood (ACB) infusion in children with CP to test whether ACB could improve function (ClinicalTrials.gov, NCT01147653; IND 14360). In this double-blind, placebo-controlled, crossover study of a single intravenous infusion of 1-5 × 107 total nucleated cells per kilogram of ACB, children ages 1 to 6 years with CP were randomly assigned to receive ACB or placebo at baseline, followed by the alternate infusion 1 year later. Motor function and magnetic resonance imaging brain connectivity studies were performed at baseline, 1, and 2 years post-treatment. The primary endpoint was change in motor function 1 year after baseline infusion. Additional analyses were performed at 2 years. Sixty-three children (median age 2.1 years) were randomized to treatment (n = 32) or placebo (n = 31) at baseline. Although there was no difference in mean change in Gross Motor Function Measure-66 (GMFM-66) scores at 1 year between placebo and treated groups, a dosing effect was identified. In an analysis 1 year post-ACB treatment, those who received doses ≥2 × 107 /kg demonstrated significantly greater increases in GMFM-66 scores above those predicted by age and severity, as well as in Peabody Developmental Motor Scales-2 Gross Motor Quotient scores and normalized brain connectivity. Results of this study suggest that appropriately dosed ACB infusion improves brain connectivity and gross motor function in young children with CP. Stem Cells Translational Medicine 2017;6:2071-2078.Item Open Access Functional parcellation of attentional control regions of the brain.(J Cogn Neurosci, 2004-01) Woldorff, Marty G; Hazlett, Chad J; Fichtenholtz, Harlan M; Weissman, Daniel H; Dale, Anders M; Song, Allen WRecently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.Item Open Access High-Resolution Diffusion Tensor Imaging and Human Brain Connectivity(2013) Guidon, ArnaudDiffusion tensor imaging (DTI) has emerged as a unique method to characterize brain tissue microstructure non-invasively. DTI typically provides the ability to study white matter structure with a standard voxel resolution of 8μL over imaging field-of-views of the extent of the human brain. As such, it has long been recognized as a promising tool not only in clinical research for the diagnostic and monitoring of white matter diseases, but also for investigating the fundamental biological principles underlying the organization of long and short-range cortical networks. However, the complexity of brain structure within an MRI voxel makes it difficult to dissociate the tissue origins of the measured anisotropy. The tensor characterization is a composite result of proton pools in different tissue and cell structures with diverse diffusion properties. As such, partial volume effects introduce a strong bias which can lead to spurious measurements, especially in regions with a complex tissue structure such as interdigitating crossing fibers or in convoluted cortical folds near the grey/white matter interface.
This dissertation focuses on the design and development of acquisition and image reconstruction strategies to improve the spatial resolution of diffusion imaging. After a brief review of the theory of diffusion MRI and of the basic principles of streamline tractography in the human brain, the main challenges to increasing the spatial resolution are discussed. A comprehensive characterization of artifacts due to motion and field inhomogeneities is provided and novel corrective methods are proposed to enable the acquisition of diffusion weighted data with 2D mulitslice imaging techniques with full brain coverage, increased SNR and high spatial resolutions of 1.25×1.25×1.25 mm3 within an acceptable scan time. The method is extended to a multishot k_z-encoded 3D multislab spiral DTI and evaluated in normal human volunteers.
To demonstrate the increased SNR and enhanced resolution capability of the proposed methods and more generally to assess the value of high-spatial resolution in diffusion imaging, a study of cortical depth-dependence of fractional anisotropy was performed at an unprecedented in-vivo inplane resolution of 0.390×0.390μm2 and an investigation of the trade-offs between spatial resolution and cortical specificity was conducted within the connectome framework.
Item Open Access High-Resolution Multi-Shot Diffusion Imaging of Structural Networks in Healthy Neurocognitive Aging.(NeuroImage, 2023-05) Merenstein, Jenna L; Zhao, Jiayi; Mullin, Hollie A; Rudolph, Marc D; Song, Allen W; Madden, David JHealthy neurocognitive aging has been associated with the microstructural degradation of white matter pathways that connect distributed gray matter regions, assessed by diffusion-weighted imaging (DWI). However, the relatively low spatial resolution of standard DWI has limited the examination of age-related differences in the properties of smaller, tightly curved white matter fibers, as well as the relatively more complex microstructure of gray matter. Here, we capitalize on high-resolution multi-shot DWI, which allows spatial resolutions < 1 mm3 to be achieved on clinical 3T MRI scanners. We assessed whether traditional diffusion tensor-based measures of gray matter microstructure and graph theoretical measures of white matter structural connectivity assessed by standard (1.5 mm3 voxels, 3.375 μl volume) and high-resolution (1 mm3 voxels, 1μl volume) DWI were differentially related to age and cognitive performance in 61 healthy adults 18-78 years of age. Cognitive performance was assessed using an extensive battery comprising 12 separate tests of fluid (speed-dependent) cognition. Results indicated that the high-resolution data had larger correlations between age and gray matter mean diffusivity, but smaller correlations between age and structural connectivity. Moreover, parallel mediation models including both standard and high-resolution measures revealed that only the high-resolution measures mediated age-related differences in fluid cognition. These results lay the groundwork for future studies planning to apply high-resolution DWI methodology to further assess the mechanisms of both healthy aging and cognitive impairment.Item Open Access Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.(Brain Connect, 2014-11) Song, Allen W; Chang, Hing-Chiu; Petty, Christopher; Guidon, Arnaud; Chen, Nan-KueiRecent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.Item Open Access Integrated RF/shim coil array for parallel reception and localized B0 Shimming: Concepts and Design(2015) Darnell, DeanMagnetic Resonance Imaging (MRI) image quality is strongly dependent on the homogeneity of the main magnetic field, B0. Inhomogeneities in this magnetic field lead to image artifacts such as: blurring, signal loss, and gross distortions of the imaged anatomy of the brain, degrading the images effectiveness to provide diagnostic information. A new radio-frequency (RF) head coil design with integrated direct-current (DC) shim coils to provide localized B0 shimming of the brain and simultaneously provide parallel excitation of reception is presented in this thesis. This design optimizes both the RF and DC shim coils proximity to the subject thereby maximizing both the signal-to-noise ratio and the shimming efficiency. This coil architecture is termed iPRES (integrated parallel receive, excitation and shimming).
An existing 32 channel receive-only head coil array was modified into an iPRES coil architecture. The coils of the array were modified using RF components to enable the simultaneous flow of both RF and DC currents on the same structure. The RF and DC currents provide concurrent signal reception and localized B0 shimming to the brain, respectively. In this thesis, the techniques, measurements and quality-metrics used to facilitate the iPRES coil array modification will be discussed.
The localized B0 shimming performance is evaluated in the frontal region of the brain which suffers from large susceptibility artifacts at the air/tissue boundary of the brain and the sinus. Axial B0 maps and echo-planar images (EPI) are acquired in vivo with optimized DC shim currents demonstrating a reduction in B0 inhomogeneities in the frontal lobe resulting in improved image EPI image quality. The coils quality factor and signal-to-noise ratio did not suffer as a result of the coil modification. The shimming performance and RF quality metrics are compared to standard whole-body spherical harmonic shimming and are discussed at length in the following chapters.
Finally, initial phantom results from the next-generation iPRES coil array will be presented. This architecture again uses an existing RF head coil array to simultaneously drive RF currents for reception and DC currents for local shimming. However, the shimming is further enhanced by providing additional RF-isolated shim coils which increases the shimming degrees of freedom. This design is useful when fast-changing, asymmetric B0 inhomogeneities are present in the imaged anatomy.
Item Open Access Maintenance and Representation of Mind Wandering during Resting-State fMRI.(Scientific reports, 2017-01-12) Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-KueiMajor advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.