Browsing by Author "Song, Haijun"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Computed tomography dose index and dose length product for cone-beam CT: Monte Carlo simulations.(Journal of applied clinical medical physics, 2011-01-19) Kim, Sangroh; Song, Haijun; Samei, Ehsan; Yin, Fang-Fang; Yoshizumi, Terry TDosimetry in kilovoltage cone beam computed tomography (CBCT) is a challenge due to the limitation of physical measurements. To address this, we used a Monte Carlo (MC) method to estimate the CT dose index (CTDI) and the dose length product (DLP) for a commercial CBCT system. As Dixon and Boone showed that CTDI concept can be applicable to both CBCT and conventional CT, we evaluated weighted CT dose index (CTDI(w)) and DLP for a commercial CBCT system. Two extended CT phantoms were created in our BEAMnrc/EGSnrc MC system. Before the simulations, the beam collimation of a Varian On-Board Imager (OBI) system was measured with radiochromic films (model: XR-QA). The MC model of the OBI X-ray tube, validated in a previous study, was used to acquire the phase space files of the full-fan and half-fan cone beams. Then, DOSXYZnrc user code simulated a total of 20 CBCT scans for the nominal beam widths from 1 cm to 10 cm. After the simulations, CBCT dose profiles at center and peripheral locations were extracted and integrated (dose profile integral, DPI) to calculate the CTDI per each beam width. The weighted cone-beam CTDI (CTDI(w,l)) was calculated from DPI values and mean CTDI(w,l) (CTDI(w,l)) and DLP were derived. We also evaluated the differences of CTDI(w) values between MC simulations and point dose measurements using standard CT phantoms. In results, it was found that CTDI(w,600) was 8.74 ± 0.01 cGy for head and CTDI(w,900) was 4.26 ± 0.01 cGy for body scan. The DLP was found to be proportional to the beam collimation. We also found that the point dose measurements with standard CT phantoms can estimate the CTDI within 3% difference compared to the full integrated CTDI from the MC method. This study showed the usability of CTDI as a dose index and DLP as a total dose descriptor in CBCT scans.Item Open Access Evaluation of an electron Monte Carlo dose calculation algorithm for electron beam.(Journal of applied clinical medical physics, 2008-06-23) Hu, Ye Angela; Song, Haijun; Chen, Zhe; Zhou, Sumin; Yin, Fang-FangThe electron Monte Carlo (eMC) dose calculation algorithm of the Eclipse treatment planning system is based heavily upon Monte Carlo simulation of the linac head and modeling of the linac beam characteristics with minimal measurement of beam data. Commissioning of the eMC algorithm on multiple identical linacs provided a unique opportunity to systematically evaluate the algorithm with actual measurements of clinically relevant beam and dose parameters. In this study, measured and eMC calculated dose distributions were compared both along and perpendicular to electron beam direction for electron energy/applicator/depth combination using measurement data from four Varian 21EX CLINAC linear accelerator (Varian Medical System, Palo Alto, CA). Cutout factors for sizes down to 3 x 3 cm were also compared. Comparisons between the measurement and the eMC calculated values show that the R90, R80, R50, and R10 values mostly agree within 3 mm. Measure and Calculated bremsstrahlung dose Dx correlates well statistically although eMC calculated Dx values are consistently smaller than the measured, with maximum discrepancy of 1% for the 20 MeV electron beams. Surface dose agrees mostly within 2%. Field width and penumbra agree mostly within 3mm. Calculation grid size is found to have a significant effect on the dose calculation. A grid size of 5 mm can produce erroneous dose distributions. Using a grid size of 2.5 mm and a 3% accuracy specified for the eMC to stop calculation iteration, the absolute output agrees with measurements within 3% for field sizes of 5 x 5 cm or larger. For cutout of 3 x 3 cm, however, the output disagreement can reach 8%. Our result indicate that eMC algorithm in Eclipse provides acceptable agreement with measurement data for most clinical situations. Calculation grid size of 2.5 mm or smaller is recommended.Item Open Access Nonuniform Planning Target Volume Margins for Prostate Bed on the Basis of Surgical Clips on Daily Cone Beam Computed Tomography.(Advances in radiation oncology, 2019-01) Song, Haijun; Salama, Joseph K; Lee, William Robert; Wu, QiuwenPurpose:We hypothesized that the interfraction motions of the superior and inferior prostate beds differ and therefore require different margins. In this study, we used daily cone beam computed tomography (CBCT) to evaluate the motion of postprostatectomy surgical clips (separated to superior and inferior portions) within the planning target volume (PTV) to derive data-driven PTV margins. Methods and Materials:Our study cohort included consecutive patients with identifiable surgical clips undergoing prostate bed irradiation with daily CBCT image guidance. We identified and contoured the clips within the PTV on the planning computed tomography and CBCT scans. All CBCT scans were registered to the planning computed tomography scan on the basis of pelvic bony structures. The superior border of the pubic symphysis was used to mark the division between the superior and inferior portions. Results:Eleven patients with 263 CBCT scans were included in the cohort. In the left-right direction, the global mean M, systematic error Σ, and residue error σ were 0.02, 0.03, and 0.16 cm, respectively, for superior clips, and 0.00, 0.03, and 0.03 cm, respectively, for inferior clips. In the anterior-posterior direction, the corresponding values were M = 0.01, Σ = 0.25, and σ= 0.37, respectively, for superior, and M = 0.08, Σ= 0.13, σ= 0.15, respectively, for inferior. In the superior-inferior direction, the values were M =-0.06, Σ= 0.23, and σ= 0.27, respectively, for superior, and M =-0.01, Σ= 0.21, σ= 0.20, respectively, for inferior. The results of the 2-tailed F tests showed that the anterior-posterior motion is statistically different between the superior and inferior portions in the anterior-posterior direction. There is no statistical difference in the superior-inferior and lateral directions. Therefore, we propose a set of nonuniform PTV margins (based on the formula 2.5 Σ+ 0.7σ) as 0.2 cm for all prostate beds in the left-right direction, 0.7 cm for all in superior-inferior, and 0.9 to 0.4 for superior-inferior in the anterior-posterior direction. Conclusions:The difference in motion between the superior and inferior portions of the prostate bed is statistically insignificant in the left-right and superior-inferior directions, but statistically significant in the anterior-posterior direction, which warrants a nonuniform PTV margin scheme.