Browsing by Author "Song, Mingqing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Donor Leukocyte Trafficking and Damage-associated Molecular Pattern Expression During Ex Vivo Lung Perfusion.(Transplantation Direct, 2020-03) Davis, Robert P; Yerxa, John; Gao, Qimeng; Gloria, Jared; Scheuermann, Uwe; Song, Mingqing; Zhang, Min; Parker, William; Lee, Jaewoo; Hartwig, Matthew G; Barbas, Andrew SBackground:While ex vivo lung perfusion (EVLP) has become established in lung transplantation, the cellular processes occurring during this period are not yet fully understood. Prior studies demonstrated that donor leukocytes (DLs) migrate from the graft into the perfusate during EVLP, but the distribution of DLs in graft and perfusate compartments has not been characterized. Moreover, cell death of DLs has been implicated in mediating graft injury during EVLP, but the underlying mechanisms have not been elucidated. We hypothesized the following: (1) there is a nonspecific migration of DLs from the graft into perfusate and (2) cell death of DLs releases damage-associated molecular patterns (DAMPs) that contribute to the inflammatory milieu during EVLP. Methods:EVLP was performed on rat lungs for 3 hours (N = 6). At the end of EVLP, flow cytometry was used to quantify the distribution of different DL cell types in both the graft and perfusate compartments. During EVLP, the perfusate was also sampled hourly to measure levels of DAMPs and downstream inflammatory cytokines generated during EVLP. Results:At the conclusion of EVLP, there was a significantly higher proportion of T and B cells present in the perfusate compartment compared with the graft compartment. There was a time-dependent increase in extracellular DNA and tumor necrosis factor α in the perfusate during EVLP. Conclusions:T cells and B cells are enriched in the perfusate compartment during EVLP. Cell death of DLs contributes to an accumulation of DAMPs during EVLP.Item Open Access IFI16-STING-NF-κB signaling controls exogenous mitochondrion-induced endothelial activation.(American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2022-06) Li, Shu; Xu, He; Song, Mingqing; Shaw, Brian I; Li, Qi-Jing; Kirk, Allan DMitochondria released from injured cells activate endothelial cells (ECs), fostering inflammatory processes, including allograft rejection. The stimulator of interferon genes (STING) senses endogenous mitochondrial DNA, triggering innate immune activation via NF-κB signaling. Here, we show that exogenous mitochondria exposure induces EC STING-NF-κB activation, promoting EC/effector memory T cell adhesion, which is abrogated by NF-κB and STING inhibitors. STING activation in mitochondrion-activated ECs is independent of canonical cGMP-AMP synthetase sensing/signaling, but rather is mediated by interferon gamma-inducible factor 16 (IFI16) and can be inhibited by IFI16 inhibition. Internalized mitochondria undergo mitofusion and STING-dependent mitophagy, leading to selective sequestration of internalized mitochondria. The exposure of donor hearts to exogenous mitochondria activates murine heart ECs in vivo. Collectively, our results suggest that IFI16-STING-NF-κB signaling regulates exogenous mitochondrion-induced EC activation and mitophagy, and exogenous mitochondria foster T cell-mediated CoBRR. These data suggest a novel, donor-directed, therapeutic approach toward mitigating perioperative allograft immunogenicity.