Browsing by Author "Staats, Janet"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A randomized phase 2 trial of pembrolizumab versus pembrolizumab and acalabrutinib in patients with platinum-resistant metastatic urothelial cancer.(Cancer, 2020-08-05) Zhang, Tian; Harrison, Michael R; O'Donnell, Peter H; Alva, Ajjai S; Hahn, Noah M; Appleman, Leonard J; Cetnar, Jeremy; Burke, John M; Fleming, Mark T; Milowsky, Matthew I; Mortazavi, Amir; Shore, Neal; Sonpavde, Guru P; Schmidt, Emmett V; Bitman, Bojena; Munugalavadla, Veerendra; Izumi, Raquel; Patel, Priti; Staats, Janet; Chan, Cliburn; Weinhold, Kent J; George, Daniel JBACKGROUND:Inhibition of the programmed cell death protein 1 (PD-1) pathway has demonstrated clinical benefit in metastatic urothelial cancer (mUC); however, response rates of 15% to 26% highlight the need for more effective therapies. Bruton tyrosine kinase (BTK) inhibition may suppress myeloid-derived suppressor cells (MDSCs) and improve T-cell activation. METHODS:The Randomized Phase 2 Trial of Acalabrutinib and Pembrolizumab Immunotherapy Dual Checkpoint Inhibition in Platinum-Resistant Metastatic Urothelial Carcinoma (RAPID CHECK; also known as ACE-ST-005) was a randomized phase 2 trial evaluating the PD-1 inhibitor pembrolizumab with or without the BTK inhibitor acalabrutinib for patients with platinum-refractory mUC. The primary objectives were safety and objective response rates (ORRs) according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Immune profiling was performed to analyze circulating monocytic MDSCs and T cells. RESULTS:Seventy-five patients were treated with pembrolizumab (n = 35) or pembrolizumab plus acalabrutinib (n = 40). The ORR was 26% with pembrolizumab (9% with a complete response [CR]) and 20% with pembrolizumab plus acalabrutinib (10% with a CR). The grade 3/4 adverse events (AEs) that occurred in ≥15% of the patients were anemia (20%) with pembrolizumab and fatigue (23%), increased alanine aminotransferase (23%), urinary tract infections (18%), and anemia (18%) with pembrolizumab plus acalabrutinib. One patient treated with pembrolizumab plus acalabrutinib had high MDSCs at the baseline, which significantly decreased at week 7. Overall, MDSCs were not correlated with a clinical response, but some subsets of CD8+ T cells did increase during the combination treatment. CONCLUSIONS:Both treatments were generally well tolerated, although serious AE rates were higher with the combination. Acalabrutinib plus pembrolizumab did not improve the ORR, PFS, or OS in comparison with pembrolizumab alone in mUC. Baseline and on-treatment peripheral monocytic MDSCs were not different in the treatment cohorts. Proliferating CD8+ T-cell subsets increased during treatment, particularly in the combination cohort. Ongoing studies are correlating these peripheral immunome findings with tissue-based immune cell infiltration.Item Open Access Establishment of normative ranges of the healthy human immune system with comprehensive polychromatic flow cytometry profiling.(PloS one, 2019-01) Yi, John S; Rosa-Bray, Marilyn; Staats, Janet; Zakroysky, Pearl; Chan, Cliburn; Russo, Melissa A; Dumbauld, Chelsae; White, Scott; Gierman, Todd; Weinhold, Kent J; Guptill, Jeffrey TExisting normative flow cytometry data have several limitations including small sample sizes, incompletely described study populations, variable flow cytometry methodology, and limited depth for defining lymphocyte subpopulations. To overcome these issues, we defined high-dimensional flow cytometry reference ranges for the healthy human immune system using Human Immunology Project Consortium methodologies after carefully screening 127 subjects deemed healthy through clinical and laboratory testing. We enrolled subjects in the following age cohorts: 18-29 years, 30-39, 40-49, and 50-66 and enrolled cohorts to ensure an even gender distribution and at least 30% non-Caucasians. From peripheral blood mononuclear cells, flow cytometry reference ranges were defined for >50 immune subsets including T-cell (activation, maturation, T follicular helper and regulatory T cell), B-cell, and innate cells. We also developed a web tool for visualization of the dataset and download of raw data. This dataset provides the immunology community with a resource to compare and extract data from rigorously characterized healthy subjects across age groups, gender and race.Item Open Access FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows.(Frontiers in immunology, 2021-01) White, Scott; Quinn, John; Enzor, Jennifer; Staats, Janet; Mosier, Sarah M; Almarode, James; Denny, Thomas N; Weinhold, Kent J; Ferrari, Guido; Chan, CliburnAn important challenge for primary or secondary analysis of cytometry data is how to facilitate productive collaboration between domain and quantitative experts. Domain experts in cytometry laboratories and core facilities increasingly recognize the need for automated workflows in the face of increasing data complexity, but by and large, still conduct all analysis using traditional applications, predominantly FlowJo. To a large extent, this cuts domain experts off from the rapidly growing library of Single Cell Data Science algorithms available, curtailing the potential contributions of these experts to the validation and interpretation of results. To address this challenge, we developed FlowKit, a Gating-ML 2.0-compliant Python package that can read and write FCS files and FlowJo workspaces. We present examples of the use of FlowKit for constructing reporting and analysis workflows, including round-tripping results to and from FlowJo for joint analysis by both domain and quantitative experts.Item Open Access Setting objective thresholds for rare event detection in flow cytometry.(J Immunol Methods, 2014-07) Richards, Adam J; Staats, Janet; Enzor, Jennifer; McKinnon, Katherine; Frelinger, Jacob; Denny, Thomas N; Weinhold, Kent J; Chan, CliburnThe accurate identification of rare antigen-specific cytokine positive cells from peripheral blood mononuclear cells (PBMC) after antigenic stimulation in an intracellular staining (ICS) flow cytometry assay is challenging, as cytokine positive events may be fairly diffusely distributed and lack an obvious separation from the negative population. Traditionally, the approach by flow operators has been to manually set a positivity threshold to partition events into cytokine-positive and cytokine-negative. This approach suffers from subjectivity and inconsistency across different flow operators. The use of statistical clustering methods does not remove the need to find an objective threshold between between positive and negative events since consistent identification of rare event subsets is highly challenging for automated algorithms, especially when there is distributional overlap between the positive and negative events ("smear"). We present a new approach, based on the Fβ measure, that is similar to manual thresholding in providing a hard cutoff, but has the advantage of being determined objectively. The performance of this algorithm is compared with results obtained by expert visual gating. Several ICS data sets from the External Quality Assurance Program Oversight Laboratory (EQAPOL) proficiency program were used to make the comparisons. We first show that visually determined thresholds are difficult to reproduce and pose a problem when comparing results across operators or laboratories, as well as problems that occur with the use of commonly employed clustering algorithms. In contrast, a single parameterization for the Fβ method performs consistently across different centers, samples, and instruments because it optimizes the precision/recall tradeoff by using both negative and positive controls.