Browsing by Author "Stone, Mars"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Comparison of Detection Limits of Fourth- and Fifth-Generation Combination HIV Antigen-Antibody, p24 Antigen, and Viral Load Assays on Diverse HIV Isolates.(Journal of clinical microbiology, 2018-08) Stone, Mars; Bainbridge, John; Sanchez, Ana M; Keating, Sheila M; Pappas, Andrea; Rountree, Wes; Todd, Chris; Bakkour, Sonia; Manak, Mark; Peel, Sheila A; Coombs, Robert W; Ramos, Eric M; Shriver, M Kathleen; Contestable, Paul; Nair, Sangeetha Vijaysri; Wilson, David H; Stengelin, Martin; Murphy, Gary; Hewlett, Indira; Denny, Thomas N; Busch, Michael PDetection of acute HIV infection is critical for HIV public health and diagnostics. Clinical fourth-generation antigen (Ag)/antibody (Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab-alone assays but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening, and next-generation assays. Three-hundred-member panels of 20 serially diluted well-characterized antibody-negative HIV isolates for which the researchers were blind to the results (blind panels) were distributed to manufacturers and end-user labs to assess the relative analytic sensitivity of currently approved and preapproved clinical HIV fourth-generation Ag/Ab combo or p24 Ag-alone immunoassays for the detection of diverse subtypes. The limits of detection (LODs) of virus were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blind panel. On the basis of the proportion of positive results on 300 observations, all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half-log LODs, illustrating the similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo assays performed poorly. The similar performance of the different commercially available fourth-generation assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next-generation preclinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while rapid fourth-generation assays performed poorly for p24 Ag detection.Item Open Access Development of a contemporary globally diverse HIV viral panel by the EQAPOL program.(J Immunol Methods, 2014-07) Sanchez, Ana M; DeMarco, C Todd; Hora, Bhavna; Keinonen, Sarah; Chen, Yue; Brinkley, Christie; Stone, Mars; Tobler, Leslie; Keating, Sheila; Schito, Marco; Busch, Michael P; Gao, Feng; Denny, Thomas NThe significant diversity among HIV-1 variants poses serious challenges for vaccine development and for developing sensitive assays for screening, surveillance, diagnosis, and clinical management. Recognizing a need to develop a panel of HIV representing the current genetic and geographic diversity NIH/NIAID contracted the External Quality Assurance Program Oversight Laboratory (EQAPOL) to isolate, characterize and establish panels of HIV-1 strains representing global diverse subtypes and circulating recombinant forms (CRFs), and to make them available to the research community. HIV-positive plasma specimens and previously established isolates were collected through a variety of collaborations with a preference for samples from acutely/recently infected persons. Source specimens were cultured to high-titer/high-volume using well-characterized cryopreserved PBMCs from National y donors. Panel samples were stored as neat culture supernatant or diluted into defibrinated plasma. Characterization for the final expanded virus stocks included viral load, p24 antigen, infectivity (TCID), sterility, coreceptor usage, and near full-length genome sequencing. Viruses are made available to approved, interested laboratories using an online ordering application. The current EQAPOL Viral Diversity panel includes 100 viral specimens representing 6 subtypes (A, B, C, D, F, and G), 2 sub-subtypes (F1 and F2), 7 CRFs (01, 02, 04, 14, 22, 24, and 47), 19 URFs and 3 group O viruses from 22 countries. The EQAPOL Viral Diversity panel is an invaluable collection of well-characterized reagents that are available to the scientific community, including researchers, epidemiologists, and commercial manufacturers of diagnostics and pharmaceuticals to support HIV research, as well as diagnostic and vaccine development.Item Open Access Development of an international external quality assurance program for HIV-1 incidence using the Limiting Antigen Avidity assay.(PloS one, 2019-01) Keating, Sheila M; Rountree, Wes; Grebe, Eduard; Pappas, Andrea L; Stone, Mars; Hampton, Dylan; Todd, Christopher A; Poniewierski, Marek S; Sanchez, Ana; Porth, Cassandra G; Denny, Thomas N; Busch, Michael P; EQAPOL Limiting Antigen (LAg) Incidence Assay External Quality Assurance (EQA) ProgramLaboratory assays for identifying recent HIV-1 infections are widely used for estimating incidence in cross-sectional population-level surveys in global HIV-1surveillance. Adequate assay and laboratory performance are required to ensure accurate incidence estimates. The NIAID-supported External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency testing program for the most widely-used incidence assay, the HIV-1 Limiting Antigen Avidity EIA (LAg), with US Centers for Disease Control and Prevention (CDC)-approved kits manufactured by Sedia Biosciences Corporation and Maxim Biomedical. The objective of this program is to monitor the performance of participating laboratories. Four rounds of blinded external proficiency (EP) panels were distributed to up to twenty testing sites (7 North American, 5 African, 4 Asian, 2 South American and 2 European). These panels consisted of ten plasma samples: three blinded well-characterized HIV-1-seropositive samples that were included as replicates and an HIV-negative control. The seropositive samples spanned the dynamic range of the assay and are categorized as either recent or long-term infection. Participating sites performed the assay according to manufacturers' instructions and completed an online survey to gather information on kit manufacturer, lot of kit used, laboratory procedures and the experience of technicians. On average, fifteen sites participated in each round of testing, with an average of four sites testing with only the Maxim assay, seven testing with only the Sedia assay and five sites utilizing both assays. Overall, the Sedia and Maxim assays yielded similar infection status categorization across the laboratories; however, for most of the nine HIV+ samples tested, there were significant differences in the optical density readouts, ODn (N = 8) and OD (N = 7), between LAg kit manufacturers (p < 0.05 based on mixed effects models. The EQAPOL LAg program is important for monitoring laboratory performance as well as detecting variations between manufacturers of HIV-1incidence assays.Item Open Access Evaluation of Commercially Available High-Throughput SARS-CoV-2 Serologic Assays for Serosurveillance and Related Applications.(Emerging infectious diseases, 2022-03) Stone, Mars; Grebe, Eduard; Sulaeman, Hasan; Di Germanio, Clara; Dave, Honey; Kelly, Kathleen; Biggerstaff, Brad J; Crews, Bridgit O; Tran, Nam; Jerome, Keith R; Denny, Thomas N; Hogema, Boris; Destree, Mark; Jones, Jefferson M; Thornburg, Natalie; Simmons, Graham; Krajden, Mel; Kleinman, Steve; Dumont, Larry J; Busch, Michael PSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveys can estimate cumulative incidence for monitoring epidemics, requiring assessment of serologic assays to inform testing algorithm development and interpretation of results. We conducted a multilaboratory evaluation of 21 commercial high-throughput SARS-CoV-2 serologic assays using blinded panels of 1,000 highly characterized specimens. Assays demonstrated a range of sensitivities (96%-63%), specificities (99%-96%), and precision (intraclass correlation coefficient 0.55-0.99). Durability of antibody detection was dependent on antigen and immunoglobulin targets; antispike and total Ig assays demonstrated more stable longitudinal reactivity than antinucleocapsid and IgG assays. Assays with high sensitivity, specificity, and durable antibody detection are ideal for serosurveillance, but assays demonstrating waning reactivity are appropriate for other applications, including correlation with neutralizing activity and detection of anamnestic boosting by reinfections. Assay performance must be evaluated in context of intended use, particularly in the context of widespread vaccination and circulation of SARS-CoV-2 variants.Item Open Access Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan.(PLoS One, 2016) Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P; Denny, Thomas N; Gao, FengA number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.Item Open Access Increased predominance of HIV-1 CRF01_AE and its recombinants in the Philippines.(The Journal of general virology, 2019-01-24) Chen, Yue; Hora, Bhavna; DeMarco, Todd; Berba, Regina; Register, Heidi; Hood, Sylvia; Carter, Meredith; Stone, Mars; Pappas, Andrea; Sanchez, Ana M; Busch, Michael; Denny, Thomas N; Gao, FengThe growth rate of new HIV infections in the Philippines was the fastest of any countries in the Asia-Pacific region between 2010 and 2016. To date, HIV-1 subtyping results in the Philippines have been determined by characterizing only partial viral genome sequences. It is not known whether recombination occurs in the majority of unsequenced genome regions. Near-full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes from plasma samples collected between 2015 and 2017 from 23 newly diagnosed infected individuals in the Philippines. Phylogenetic analysis showed that the newly characterized sequences were CRF01_AE (14), subtype B (3), CRF01/B recombinants (5) and a CRF01/CRF07/B recombinant (1). All 14 CRF01_AE formed a tight cluster, suggesting that they were derived from a single introduction. The time to the most recent common ancestor (tMRCA) for CRF01_AE in the Philippines was 1995 (1992-1998), about 10-15 years later than that of CRF01_AE in China and Thailand. All five CRF01/B recombinants showed distinct recombination patterns, suggesting ongoing recombination between the two predominant circulating viruses. The identification of partial CRF07_BC sequences in one CRF01/CRF07/B recombinant, not reported previously in the Philippines, indicated that CRF07_BC may have been recently introduced into that country from China, where CRF07_BC is prevalent. Our results show that the major epidemic strains may have shifted to an increased predominance of CRF01_AE and its recombinants, and that other genotypes such as CRF07_BC may have been introduced into the Philippines.Item Open Access Streamlined Subpopulation, Subtype, and Recombination Analysis of HIV-1 Half-Genome Sequences Generated by High-Throughput Sequencing.(mSphere, 2020-10-14) Hora, Bhavna; Gulzar, Naila; Chen, Yue; Karagiannis, Konstantinos; Cai, Fangping; Su, Chang; Smith, Krista; Simonyan, Vahan; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M; Stone, Mars; Cohen, Myron S; Denny, Thomas N; Mazumder, Raja; Gao, FengHigh-throughput sequencing (HTS) has been widely used to characterize HIV-1 genome sequences. There are no algorithms currently that can directly determine genotype and quasispecies population using short HTS reads generated from long genome sequences without additional software. To establish a robust subpopulation, subtype, and recombination analysis workflow, we amplified the HIV-1 3'-half genome from plasma samples of 65 HIV-1-infected individuals and sequenced the entire amplicon (∼4,500 bp) by HTS. With direct analysis of raw reads using HIVE-hexahedron, we showed that 48% of samples harbored 2 to 13 subpopulations. We identified various subtypes (17 A1s, 4 Bs, 27 Cs, 6 CRF02_AGs, and 11 unique recombinant forms) and defined recombinant breakpoints of 10 recombinants. These results were validated with viral genome sequences generated by single genome sequencing (SGS) or the analysis of consensus sequence of the HTS reads. The HIVE-hexahedron workflow is more sensitive and accurate than just evaluating the consensus sequence and also more cost-effective than SGS.IMPORTANCE The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS).