Browsing by Author "Stuart, AM"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access An adaptive Euler-Maruyama scheme for SDEs: Convergence and stability(IMA Journal of Numerical Analysis, 2007-01-01) Lamba, H; Mattingly, JC; Stuart, AMThe understanding of adaptive algorithms for stochastic differential equations (SDEs) is an open area, where many issues related to both convergence and stability (long-time behaviour) of algorithms are unresolved. This paper considers a very simple adaptive algorithm, based on controlling only the drift component of a time step. Both convergence and stability are studied. The primary issue in the convergence analysis is that the adaptive method does not necessarily drive the time steps to zero with the user-input tolerance. This possibility must be quantified and shown to have low probability. The primary issue in the stability analysis is ergodicity. It is assumed that the noise is nondegenerate, so that the diffusion process is elliptic, and the drift is assumed to satisfy a coercivity condition. The SDE is then geometrically ergodic (averages converge to statistical equilibrium exponentially quickly). If the drift is not linearly bounded, then explicit fixed time step approximations, such as the Euler-Maruyama scheme, may fail to be ergodic. In this work, it is shown that the simple adaptive time-stepping strategy cures this problem. In addition to proving ergodicity, an exponential moment bound is also proved, generalizing a result known to hold for the SDE itself. © The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.Item Open Access Convergence of numerical time-averaging and stationary measures via Poisson equations(SIAM Journal on Numerical Analysis, 2010-07-07) Mattingly, JC; Stuart, AM; Tretyakov, MVNumerical approximation of the long time behavior of a stochastic di.erential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.Item Open Access Convergence of numerical time-averaging and stationary measures via Poisson equations(SIAM Journal on Numerical Analysis, 2010-07-07) Mattingly, Jonathan Christopher; Stuart, AM; Tretyakov, MVNumerical approximation of the long time behavior of a stochastic di.erential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.Item Open Access Diffusion limits of the random walk metropolis algorithm in high dimensions(Annals of Applied Probability, 2012-06-01) Mattingly, JC; Pillai, NS; Stuart, AMDiffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying computational complexity. In particular, they lead directly to precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have mainly been proved for target measures with a product structure, severely limiting their applicability. The purpose of this paper is to study diffusion limits for a class of naturally occurring high-dimensional measures found from the approximation of measures on a Hilbert space which are absolutely continuous with respect to a Gaussian reference measure. The diffusion limit of a random walk Metropolis algorithm to an infinite-dimensional Hilbert space valued SDE (or SPDE) is proved, facilitating understanding of the computational complexity of the algorithm. © 2012 Institute of Mathematical Statistics.