Browsing by Author "Su, T"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells(Advanced Therapeutics, 2019-10-01) Huang, K; Li, Z; Su, T; Shen, D; Hu, S; Cheng, KBone marrow stem cells (BMSCs) are a promising strategy for cardiac regenerative therapy for myocardial infarction (MI). However, cell transplantation has to overcome a number of hurdles, such as cell quality control, clinical practicality, low cell retention/engraftment, and immune reactions when allogeneic cells are used. Bispecific antibodies (BsAbs) have been developed as potential agents in cancer immunotherapy but their application is sparse in cardiovascular diseases. In the present study, BsAbs are designed by chemical cycloaddition of F(ab′)2 fragments from monoclonal anti-CD34 and anti- cardiac myosin heavy chain (CMHC) antibodies, which specifically targets circulating CD34-positive cells and injured cardiomyocytes simultaneously. It is hypothesized that intravenous administration of stem cell re-directing (SCRD) BsAbs (anti-CD34-F(ab′)2–anti-CMHC-F(ab′)2) can home endogenous BMSCs to the injured heart for cardiac repair. The in vivo studies in a mouse model with heart ischemia/reperfusion (I/R) injury demonstrate the safety and therapeutic potency of SCRD BsAb, which supports cardiac recovery by reducing scarring, promoting angiomyogenesis, and boosting cardiac function.Item Open Access Correction to: AI is a viable alternative to high throughput screening: a 318-target study (Scientific Reports, (2024), 14, 1, (7526), 10.1038/s41598-024-54655-z)(Scientific Reports, 2024-12-01) Giles, E; Heifets, A; Artía, Z; Inde, Z; Liu, Z; Zhang, Z; Wang, Z; Su, Z; Chung, Z; Frangos, ZJ; Li, Y; Yen, Y; Sidorova, YA; Tse-Dinh, YC; He, Y; Tang, Y; Li, Y; Pérez-Pertejo, Y; Gupta, YK; Zhu, Y; Sun, Y; Li, Y; Chen, Y; Aldhamen, YA; Hu, Y; Zhang, YJ; Zhang, X; Yuan, X; Wang, X; Qin, X; Yu, X; Xu, X; Qi, X; Lu, X; Wu, X; Blanchet, X; Foong, WE; Bradshaw, WJ; Gerwick, WH; Kerr, WG; Hahn, WC; Donaldson, WA; Van Voorhis, WC; Zhang, W; Tang, W; Li, W; Houry, WA; Lowther, WT; Clayton, WB; Van Hung Le, V; Ronchi, VP; Woods, VA; Scoffone, VC; Maltarollo, VG; Dolce, V; Maranda, V; Segers, VFM; Namasivayam, V; Gunasekharan, V; Robinson, VL; Banerji, V; Tandon, V; Thai, VC; Pai, VP; Desai, UR; Baumann, U; Chou, TF; Chou, T; O’Mara, TA; Banjo, T; Su, T; Lan, T; Ogunwa, TH; Hermle, T; Corson, TW; O’Meara, TR; Kotzé, TJ; Herdendorf, TJ; Richardson, TI; Kampourakis, T; Gillingwater, TH; Jayasinghe, TD; Teixeira, TR; Ikegami, T; Moreda, TL; Haikarainen, T; Akopian, T; Abaffy, T; Swart, T; Mehlman, T; Teramoto, T; Azeem, SM; Dallman, S; Brady-Kalnay, SM; Sarilla, S; Van Doren, SR; Marx, SO; Olson, SH; Poirier, S; Waggoner, SNCorrection to: Scientific Reportshttps://doi.org/10.1038/s41598-024-54655-z, published online 02 April 2024 The original version of this Article contained errors. In the original version of this article, Ellie Giles was omitted from the Author list. Additionally, the following Affiliation information has been updated: 1. Affiliation 25 was incorrect. Affiliation 25 ‘Queensland University of Technology, Brisbane, USA.’ now reads, ‘Queensland University of Technology, Brisbane, Australia.’ 2. Marta Giorgis was incorrectly affiliated with the ‘University of Aberdeen, Aberdeen, UK.’ The correct Affiliation is listed below: ‘University of Turin, Turin, Italy.’ 3. Affiliations 52, 125 and 261 were duplicated. As a result, the correct Affiliation for Andrew B. Herr, Benjamin Liou, David A. Hildeman, Joseph J. Maciag, Ying Sun, Durga Krishnamurthy, and Stephen N. Waggoner is: ‘Cincinnati Children’s Hospital Medical Center, Cincinnati, USA.’ Furthermore, an outdated version of Figure 1 was typeset. The original Figure 1 and accompanying legend appear below. (Figure presented.) Pairs of representative compounds extracted from AI patents (right) and corresponding prior patents (left) for clinical-stage programs (CDK792,93, A2Ar-antagonist94,95, MALT196,97, QPCTL98,99, USP1100,101, and 3CLpro102,103). The identical atoms between the chemical structures are highlighted in red. Lastly, The Acknowledgements section contained an error. “See Supplementary section S1.” now reads, “See Supplementary section S2.” The original Article has been corrected.Item Open Access Glucose oxidase triggers gelation of N-hydroxyimide-heparin conjugates to form enzyme-responsive hydrogels for cell-specific drug delivery(Chemical Science, 2014-11-01) Su, T; Tang, Z; He, H; Li, W; Wang, X; Liao, C; Sun, Y; Wang, QA new strategy for creating enzyme-responsive hydrogels by employing an N-hydroxyimide-heparin conjugate, designed to act as both an enzyme-mediated radical initiator and an enzyme-sensitive therapeutic carrier, is described. A novel enzyme-mediated redox initiation system involving glucose oxidase (GOx), an N-hydroxyimide-heparin conjugate and glucose is reported. The GOx-mediated radical polymerization reaction allows quick formation of hydrogels under mild conditions, with excellent flexibility in the modulation of the physical and chemical characteristics. The heparin-specific enzymatic cleavage reaction enables the delivery of cargo from the hydrogel in amounts that are controlled by the environmental levels of heparanase, which is frequently associated with tumor angiogenesis and metastasis. The formed hydrogels can realize cell-specific drug delivery by targeting cancer cells that are characterized by heparanase overexpression, whilst showing little toxicity towards normal cells. This journal isItem Open Access Hydrogel-coated enzyme electrodes formed by GOx-mediated polymerization for glucose detecting(RSC Advances, 2015-01-01) Zhang, Z; Tang, Z; Su, T; Li, W; Wang, QThis communication reports the mild fabrication of a hydrogel-coated enzyme electrode for glucose detecting with high sensitivity (35.19 μA mM-1 cm-2) and robust stability.Item Open Access Microgels formed by enzyme-mediated polymerization in reverse micelles with tunable activity and high stability(RSC Advances, 2015-01-01) Bao, S; Wu, D; Su, T; Wu, Q; Wang, QThis communication describes the preparation of microgels via enzyme-triggered inverse emulsion polymerization, which provides an effective method for immobilizing enzymes with tunable catalytic performance and high stability.