Browsing by Author "Sugimoto, Jun"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access A novel human endogenous retroviral protein inhibits cell-cell fusion.(Scientific reports, 2013-01) Sugimoto, Jun; Sugimoto, Makiko; Bernstein, Helene; Jinno, Yoshihiro; Schust, DannyWhile common in viral infections and neoplasia, spontaneous cell-cell fusion, or syncytialization, is quite restricted in healthy tissues. Such fusion is essential to human placental development, where interactions between trophoblast-specific human endogenous retroviral (HERV) envelope proteins, called syncytins, and their widely-distributed cell surface receptors are centrally involved. We have identified the first host cell-encoded protein that inhibits cell fusion in mammals. Like the syncytins, this protein, called suppressyn, is HERV-derived, placenta-specific and well-conserved over simian evolution. In vitro, suppressyn binds to the syn1 receptor and inhibits syn1-, but not syn2-mediated trophoblast syncytialization. Suppressyn knock-down promotes cell-cell fusion in trophoblast cells and cell-associated and secreted suppressyn binds to the syn1 receptor, ASCT2. Identification of the first host cell-encoded inhibitor of mammalian cell fusion may encourage improved understanding of cell fusion mechanisms, of placental morphogenesis and of diseases resulting from abnormal cell fusion.Item Open Access Chlamydia trachomatis immune evasion via downregulation of MHC class I surface expression involves direct and indirect mechanisms.(Infectious diseases in obstetrics and gynecology, 2011-01) Ibana, Joyce A; Schust, Danny J; Sugimoto, Jun; Nagamatsu, Takeshi; Greene, Sheila J; Quayle, Alison JGenital C. trachomatis infections typically last for many months in women. This has been attributed to several strategies by which C. trachomatis evades immune detection, including well-described methods by which C. trachomatis decreases the cell surface expression of the antigen presenting molecules major histocompatibility complex (MHC) class I, MHC class II, and CD1d in infected genital epithelial cells. We have harnessed new methods that allow for separate evaluation of infected and uninfected cells within a mixed population of chlamydia-infected endocervical epithelial cells to demonstrate that MHC class I downregulation in the presence of C. trachomatis is mediated by direct and indirect (soluble) factors. Such indirect mechanisms may aid in priming surrounding cells for more rapid immune evasion upon pathogen entry and help promote unfettered spread of C. trachomatis genital infections.Item Open Access Controlling Trophoblast Cell Fusion in the Human Placenta-Transcriptional Regulation of Suppressyn, an Endogenous Inhibitor of Syncytin-1.(Biomolecules, 2023-11) Sugimoto, Jun; Schust, Danny J; Sugimoto, Makiko; Jinno, Yoshihiro; Kudo, YoshikiCell fusion in the placenta is tightly regulated. Suppressyn is a human placental endogenous retroviral protein that inhibits the profusogenic activities of another well-described endogenous retroviral protein, syncytin-1. In this study, we aimed to elucidate the mechanisms underlying suppressyn's placenta-specific expression. We identified the promoter region and a novel enhancer region for the gene encoding suppressyn, ERVH48-1, and examined their regulation via DNA methylation and their responses to changes in the oxygen concentration. Like other endogenous retroviral genes, the ERVH48-1 promoter sequence is found within a characteristic retroviral 5' LTR sequence. The novel enhancer sequence we describe here is downstream of this LTR sequence (designated EIEs: ERV internal enhancer sequence) and governs placental expression. The placenta-specific expression of ERVH48-1 is tightly controlled by DNA methylation and further regulated by oxygen concentration-dependent, hypoxia-induced transcription factors (HIF1α and HIF2α). Our findings highlight the involvement of (1) tissue specificity through DNA methylation, (2) expression specificity through placenta-specific enhancer regions, and (3) the regulation of suppressyn expression in differing oxygen conditions by HIF1α and HIF2α. We suggest that these regulatory mechanisms are central to normal and abnormal placental development, including the development of disorders of pregnancy involving altered oxygenation, such as preeclampsia, pregnancy-induced hypertension, and fetal growth restriction.Item Open Access Could the Human Endogenous Retrovirus-Derived Syncytialization Inhibitor, Suppressyn, Limit Heterotypic Cell Fusion Events in the Decidua?(International journal of molecular sciences, 2021-09) Sugimoto, Jun; Choi, Sehee; Sheridan, Megan A; Koh, Iemasa; Kudo, Yoshiki; Schust, Danny JProper placental development relies on tightly regulated trophoblast differentiation and interaction with maternal cells. Human endogenous retroviruses (HERVs) play an integral role in modulating cell fusion events in the trophoblast cells of the developing placenta. Syncytin-1 (ERVW-1) and its receptor, solute-linked carrier family A member 5 (SLC1A5/ASCT2), promote fusion of cytotrophoblast (CTB) cells to generate the multi-nucleated syncytiotrophoblast (STB) layer which is in direct contact with maternal blood. Another HERV-derived protein known as Suppressyn (ERVH48-1/SUPYN) is implicated in anti-fusogenic events as it shares the common receptor with ERVW-1. Here, we explore primary tissue and publicly available datasets to determine the distribution of ERVW-1, ERVH48-1 and SLC1A5 expression at the maternal-fetal interface. While SLC1A5 is broadly expressed in placental and decidual cell types, ERVW-1 and ERVH48-1 are confined to trophoblast cell types. ERVH48-1 displays higher expression levels in CTB and extravillous trophoblast, than in STB, while ERVW-1 is generally highest in STB. We have demonstrated through gene targeting studies that suppressyn has the ability to prevent ERVW-1-induced fusion events in co-culture models of trophoblast cell/maternal endometrial cell interactions. These findings suggest that differential HERV expression is vital to control fusion and anti-fusogenic events in the placenta and consequently, any imbalance or dysregulation in HERV expression may contribute to adverse pregnancy outcomes.Item Open Access Involvement of the HERV-derived cell-fusion inhibitor, suppressyn, in the fusion defects characteristic of the trisomy 21 placenta.(Scientific reports, 2022-06) Sugimoto, Jun; Schust, Danny J; Yamazaki, Tomomi; Kudo, YoshikiSuppressyn (SUPYN) is the first host-cell encoded mammalian protein shown to inhibit cell-cell fusion. Its expression is restricted to the placenta, where it negatively regulates syncytia formation in villi. Since its chromosomal localization overlaps with the Down syndrome critical region and the TS21 placenta is characterized by delayed maturation of cytotrophoblast cells and reduced syncytialization, we hypothesized a potential link between changes in SUPYN expression and morphologic abnormalities in the TS21 placenta. Here we demonstrate that an increase in chromosomal copy number in the TS21 placenta is associated with: (1) reduced fusion of cytotrophoblast cells into syncytiotrophoblast in vivo, (2) increased SUPYN transcription, translation and secretion in vivo, (3) increased SUPYN/syncytin-1 receptor degradation in vivo, (4) increased SUPYN transcription and secretion ex vivo, (5) decreased cytotrophoblast cell fusion ex vivo, and (6) reciprocal response of changes in SUPYN and CGB in TS21 placental cells ex vivo. These data suggest direct links between immature placentation in Down syndrome and increased SUPYN. Finally, we report a significant increase in secreted SUPYN concentration in maternal serum in women with pregnancies affected by Down syndrome, suggesting that SUPYN may be useful as an alternate or additional diagnostic marker for this disease.Item Open Access Suppressyn localization and dynamic expression patterns in primary human tissues support a physiologic role in human placentation.(Scientific reports, 2019-12) Sugimoto, Jun; Schust, Danny J; Kinjo, Tadatsugu; Aoki, Yoichi; Jinno, Yoshihiro; Kudo, YoshikiWe previously identified suppressyn (SUPYN), a placental protein that negatively regulates the cell fusion essential for trophoblast syncytialization via binding to the trophoblast receptor for syncytin-1, ASCT2, and hypothesized that SUPYN may thereby regulate cell-cell fusion in the placenta. Here, we redefine in vivo SUPYN localization using specific monoclonal antibodies in a rare early placental sample, showing SUPYN localization in villous and extravillous trophoblast subtypes, the decidua and even in placental debris in the maternal vasculature. In human trophoblast cell lines, we show SUPYN alters ASCT2 glycosylation within the secretory pathway and that this binding is associated with inhibition of cell fusion. Using newly-optimized trophoblast isolation protocols that allow tracking of ex vivo cell fusion, we present transcription and translation dynamics of fusion-related proteins over 96 hours in culture and the effects of changes in ambient oxygen levels on these processes. We report converse syncytin-1 and SUPYN transcriptional and translational responses to surrounding oxygen concentrations that suggest both are important in the effects of hypoxia and hyperoxia on placental syncytialization. Our results suggest that SUPYN's anti-fusogenic properties may be exerted at several sites in the maternal body and its dysregulation may be associated with diseases of abnormal placentation.Item Open Access The Immunology of Syncytialized Trophoblast.(International journal of molecular sciences, 2021-02) Schust, Danny J; Bonney, Elizabeth A; Sugimoto, Jun; Ezashi, Toshi; Roberts, R Michael; Choi, Sehee; Zhou, JieMultinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell-cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal-fetal immune interactions specifically at syncytiotrophoblast interfaces.