Browsing by Author "Sweeney, Timothy E"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A community approach to mortality prediction in sepsis via gene expression analysis.(Nature communications, 2018-02) Sweeney, Timothy E; Perumal, Thanneer M; Henao, Ricardo; Nichols, Marshall; Howrylak, Judith A; Choi, Augustine M; Bermejo-Martin, Jesús F; Almansa, Raquel; Tamayo, Eduardo; Davenport, Emma E; Burnham, Katie L; Hinds, Charles J; Knight, Julian C; Woods, Christopher W; Kingsmore, Stephen F; Ginsburg, Geoffrey S; Wong, Hector R; Parnell, Grant P; Tang, Benjamin; Moldawer, Lyle L; Moore, Frederick E; Omberg, Larsson; Khatri, Purvesh; Tsalik, Ephraim L; Mangravite, Lara M; Langley, Raymond JImproved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.Item Open Access Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis.(J Cell Sci, 2010-08-01) Suliman, Hagir B; Sweeney, Timothy E; Withers, Crystal M; Piantadosi, Claude AThe nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.Item Open Access Sepsis Subclasses: A Framework for Development and Interpretation.(Critical care medicine, 2021-05) DeMerle, Kimberley M; Angus, Derek C; Baillie, J Kenneth; Brant, Emily; Calfee, Carolyn S; Carcillo, Joseph; Chang, Chung-Chou H; Dickson, Robert; Evans, Idris; Gordon, Anthony C; Kennedy, Jason; Knight, Julian C; Lindsell, Christopher J; Liu, Vincent; Marshall, John C; Randolph, Adrienne G; Scicluna, Brendon P; Shankar-Hari, Manu; Shapiro, Nathan I; Sweeney, Timothy E; Talisa, Victor B; Tang, Benjamin; Thompson, B Taylor; Tsalik, Ephraim L; van der Poll, Tom; van Vught, Lonneke A; Wong, Hector R; Yende, Sachin; Zhao, Huiying; Seymour, Christopher WSepsis is defined as a dysregulated host response to infection that leads to life-threatening acute organ dysfunction. It afflicts approximately 50 million people worldwide annually and is often deadly, even when evidence-based guidelines are applied promptly. Many randomized trials tested therapies for sepsis over the past 2 decades, but most have not proven beneficial. This may be because sepsis is a heterogeneous syndrome, characterized by a vast set of clinical and biologic features. Combinations of these features, however, may identify previously unrecognized groups, or "subclasses" with different risks of outcome and response to a given treatment. As efforts to identify sepsis subclasses become more common, many unanswered questions and challenges arise. These include: 1) the semantic underpinning of sepsis subclasses, 2) the conceptual goal of subclasses, 3) considerations about study design, data sources, and statistical methods, 4) the role of emerging data types, and 5) how to determine whether subclasses represent "truth." We discuss these challenges and present a framework for the broader study of sepsis subclasses. This framework is intended to aid in the understanding and interpretation of sepsis subclasses, provide a mechanism for explaining subclasses generated by different methodologic approaches, and guide clinicians in how to consider subclasses in bedside care.