Browsing by Author "Swift, Joshua M"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access 5-Hydroxymethylfurfural reduces skeletal muscle superoxide production and modifies force production in rats exposed to hypobaric hypoxia.(Physiological reports, 2023-07) Ciarlone, Geoffrey E; Swift, Joshua M; Williams, Brian T; Mahon, Richard T; Roney, Nicholas G; Yu, Tianzheng; Gasier, Heath GDecreased blood-tissue oxygenation at high altitude (HA) increases mitochondrial oxidant production and reduces exercise capacity. 5-Hydroxymethylfurfural (5-HMF) is an antioxidant that increases hemoglobin's binding affinity for oxygen. For these reasons, we hypothesized that 5-HMF would improve muscle performance in rats exposed to a simulated HA of ~5500 m. A secondary objective was to measure mitochondrial activity and dynamic regulation of fission and fusion because they are linked processes impacted by HA. Fisher 344 rats received 5-HMF (40 mg/kg/day) or vehicle during exposure to sea level or HA for 72 h. Right ankle plantarflexor muscle function was measured pre- and post-exposure. Post-exposure measurements included arterial blood gas and complete blood count, flexor digitorum brevis myofiber superoxide production and mitochondrial membrane potential (ΔΨm), and mitochondrial dynamic regulation in the soleus muscle. HA reduced blood oxygenation, increased superoxide levels and lowered ΔΨm, responses that were accompanied by decreased peak isometric torque and force production at frequencies >75 Hz. 5-HMF increased isometric force production and lowered oxidant production at sea level. In HA exposed animals, 5-HMF prevented a decline in isometric force production at 75-125 Hz, prevented an increase in superoxide levels, further decreased ΔΨm, and increased mitochondrial fusion 2 protein expression. These results suggest that 5-HMF may prevent a decrease in hypoxic force production during submaximal isometric contractions by an antioxidant mechanism.Item Open Access Carbon Monoxide and Exercise Prevents Diet-Induced Obesity and Metabolic Dysregulation Without Affecting Bone.(Obesity (Silver Spring, Md.), 2020-05) Gasier, Heath G; Yu, Tianzheng; Swift, Joshua M; Metzger, Corrine E; McNerny, Erin M; Swallow, Elizabeth A; Piantadosi, Claude A; Allen, Matthew RObjective
Carbon monoxide (CO) may counteract obesity and metabolic dysfunction in rodents consuming high-fat diets, but the skeletal effects are not understood. This study investigated whether low-dose inhaled CO (250 ppm) with or without moderate intensity aerobic exercise (3 h/wk) would limit diet-induced obesity and metabolic dysregulation and preserve bone health.Methods
Obesity-resistant (OR) rats served as controls, and obesity-prone (OP) rats were randomized to sedentary, sedentary plus CO, exercise, or CO plus exercise. For 10 weeks, OP rats consumed a high-fat, high-sucrose diet, whereas OR rats consumed a low-fat control diet. Measurements included indicators of obesity and metabolism, bone turnover markers, femoral geometry and microarchitecture, bone mechanical properties, and tibial morphometry.Results
A high-fat, high-sucrose diet led to obesity, hyperinsulinemia, and hyperleptinemia, without impacting bone. CO alone led only to a modest reduction in weight gain. Exercise attenuated weight gain and improved the metabolic profile; however, bone fragility increased. Combined CO and exercise led to body mass reduction and a metabolic state similar to control OR rats and prevented the exercise-induced increase in bone fragility.Conclusions
CO and aerobic exercise training prevent obesity and metabolic sequelae of nutrient excess while stabilizing bone physiology.