Browsing by Author "Swinney, Harry L"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Correlation between Voronoi volumes in disc packings(EPL (Europhysics Letters), 2012-02-01) Zhao, Song-Chuan; Sidle, Stacy; Swinney, Harry L; Schröter, MatthiasWe measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction $\phi_{\rm avg}$ ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of $\phi_{\rm avg}$ and anti-correlations for $\phi_{\rm avg}>0.8277$. The spatial extent of the anti-correlation increases with $\phi_{\rm avg}$ while the position of the maximum of the anti-correlation and the extent of the positive correlation shrink with $\phi_{\rm avg}$. We conjecture that the onset of anti-correlation corresponds to dilatancy onset in this system.Item Open Access Nucleation in Sheared Granular Matter.(Physical review letters, 2018-02) Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, MatthiasWe present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.Item Open Access Stationary state volume fluctuations in a granular medium.(Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03-30) Schröter, Matthias; Goldman, Daniel I; Swinney, Harry LA statistical description of static granular material requires ergodic sampling of the phase space spanned by the different configurations of the particles. We periodically fluidize a column of glass beads and find that the sequence of volume fractions phi of postfluidized states is history independent and Gaussian distributed about a stationary state. The standard deviation of phi exhibits, as a function of phi, a minimum corresponding to a maximum in the number of statistically independent regions. Measurements of the fluctuations enable us to determine the compactivity X , a temperaturelike state variable introduced in the statistical theory of Edwards and Oakeshott [Physica A 157, 1080 (1989)].