Browsing by Author "Syvitski, J"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A formal Anthropocene is compatible with but distinct from its diachronous anthropogenic counterparts: a response to W.F. Ruddiman’s ‘three flaws in defining a formal Anthropocene’(Progress in Physical Geography, 2019-06-01) Zalasiewicz, J; Waters, CN; Head, MJ; Poirier, C; Summerhayes, CP; Leinfelder, R; Grinevald, J; Steffen, W; Syvitski, J; Haff, P; McNeill, JR; Wagreich, M; Fairchild, IJ; Richter, DD; Vidas, D; Williams, M; Barnosky, AD; Cearreta, A© The Author(s) 2019. We analyse the ‘three flaws’ to potentially defining a formal Anthropocene geological time unit as advanced by Ruddiman (2018). (1) We recognize a long record of pre-industrial human impacts, but note that these increased in relative magnitude slowly and were strongly time-transgressive by comparison with the extraordinarily rapid, novel and near-globally synchronous changes of post-industrial time. (2) The rules of stratigraphic nomenclature do not ‘reject’ pre-industrial anthropogenic signals – these have long been a key characteristic and distinguishing feature of the Holocene. (3) In contrast to the contention that classical chronostratigraphy is now widely ignored by scientists, it remains vital and widely used in unambiguously defining geological time units and is an indispensable part of the Earth sciences. A mounting body of evidence indicates that the Anthropocene, considered as a precisely defined geological time unit that begins in the mid-20th century, is sharply distinct from the Holocene.Item Open Access Stratigraphic and Earth System approaches to defining the Anthropocene(Earth's Future, 2016-08-01) Steffen, W; Leinfelder, R; Zalasiewicz, J; Waters, CN; Williams, M; Summerhayes, C; Barnosky, AD; Cearreta, A; Crutzen, P; Edgeworth, M; Ellis, EC; Fairchild, IJ; Galuszka, A; Grinevald, J; Haywood, A; Ivar do Sul, J; Jeandel, C; McNeill, JR; Odada, E; Oreskes, N; Revkin, A; Richter, DDB; Syvitski, J; Vidas, D; Wagreich, M; Wing, SL; Wolfe, AP; Schellnhuber, HJ© 2016 The Authors. Stratigraphy provides insights into the evolution and dynamics of the Earth System over its long history. With recent developments in Earth System science, changes in Earth System dynamics can now be observed directly and projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilize the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.