Browsing by Author "Szamel, Grzegorz"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A microscopic model of the Stokes-Einstein relation in arbitrary dimension.(The Journal of chemical physics, 2018-06) Charbonneau, Benoit; Charbonneau, Patrick; Szamel, GrzegorzThe Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to partially structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.Item Open Access Interplay between percolation and glassiness in the random Lorentz gas.(Physical review. E, 2021-03) Biroli, Giulio; Charbonneau, Patrick; Corwin, Eric I; Hu, Yi; Ikeda, Harukuni; Szamel, Grzegorz; Zamponi, FrancescoThe random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media that exhibits a continuous localization transition controlled by void space percolation. The RLG also provides a toy model of particle caging, which is known to be relevant for describing the discontinuous dynamical transition of glasses. In order to clarify the interplay between the seemingly incompatible percolation and caging descriptions of the RLG, we consider its exact mean-field solution in the infinite-dimensional d→∞ limit and perform numerics in d=2...20. We find that for sufficiently high d the mean-field caging transition precedes and prevents the percolation transition, which only happens on timescales diverging with d. We further show that activated processes related to rare cage escapes destroy the glass transition in finite dimensions, leading to a rich interplay between glassiness and percolation physics. This advance suggests that the RLG can be used as a toy model to develop a first-principle description of particle hopping in structural glasses.Item Open Access Mean-Field Caging in a Random Lorentz Gas.(The journal of physical chemistry. B, 2021-06-07) Biroli, Giulio; Charbonneau, Patrick; Hu, Yi; Ikeda, Harukuni; Szamel, Grzegorz; Zamponi, FrancescoThe random Lorentz gas (RLG) is a minimal model of both percolation and glassiness, which leads to a paradox in the infinite-dimensional, d → ∞ limit: the localization transition is then expected to be continuous for the former and discontinuous for the latter. As a putative resolution, we have recently suggested that, as d increases, the behavior of the RLG converges to the glassy description and that percolation physics is recovered thanks to finite-d perturbative and nonperturbative (instantonic) corrections [Biroli et al. Phys. Rev. E 2021, 103, L030104]. Here, we expand on the d → ∞ physics by considering a simpler static solution as well as the dynamical solution of the RLG. Comparing the 1/d correction of this solution with numerical results reveals that even perturbative corrections fall out of reach of existing theoretical descriptions. Comparing the dynamical solution with the mode-coupling theory (MCT) results further reveals that, although key quantitative features of MCT are far off the mark, it does properly capture the discontinuous nature of the d → ∞ RLG. These insights help chart a path toward a complete description of finite-dimensional glasses.