Browsing by Author "Tang, Tengjie"
- Results Per Page
- Sort Options
Item Open Access Bayesian Modeling for Identifying Selection in B cell Maturation(2023) Tang, TengjieThis thesis focuses on modeling the selection effects on B cell antibody mutations to identify amino acids under strong selection. Site-wise selection coefficients are parameterized by the fitnesses of amino acids. First, we conduct simulation studies to evaluate the accuracy of the Monte Carlo p-value approach for identifying selection for specific amino acid/location combinations. Then, we adopt Bayesian methods to infer location-specific fitness parameters for each amino acid. In particular, we propose the use of a spike-and-slab prior and implement Markov chain Monte Carlo (MCMC) algorithms for posterior sampling. Further simulation studies are conducted to evaluate the performance of the proposed Bayesian methods in inferring fitness parameters and identifying strong selection. The results demonstrate the reliable inference and detection performance of the proposed Bayesian methods. Finally, an example using real antibody sequences is provided. This work can help identify important early mutations in B cell antibodies, which is crucial for developing an effective HIV vaccine.
Item Open Access Comparison of methods that combine multiple randomized trials to estimate heterogeneous treatment effects.(Statistics in medicine, 2024-03) Brantner, Carly Lupton; Nguyen, Trang Quynh; Tang, Tengjie; Zhao, Congwen; Hong, Hwanhee; Stuart, Elizabeth AIndividualized treatment decisions can improve health outcomes, but using data to make these decisions in a reliable, precise, and generalizable way is challenging with a single dataset. Leveraging multiple randomized controlled trials allows for the combination of datasets with unconfounded treatment assignment to better estimate heterogeneous treatment effects. This article discusses several nonparametric approaches for estimating heterogeneous treatment effects using data from multiple trials. We extend single-study methods to a scenario with multiple trials and explore their performance through a simulation study, with data generation scenarios that have differing levels of cross-trial heterogeneity. The simulations demonstrate that methods that directly allow for heterogeneity of the treatment effect across trials perform better than methods that do not, and that the choice of single-study method matters based on the functional form of the treatment effect. Finally, we discuss which methods perform well in each setting and then apply them to four randomized controlled trials to examine effect heterogeneity of treatments for major depressive disorder.