Browsing by Author "Tang, Wanli"
Results Per Page
Sort Options
Item Open Access Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A.(Proc Natl Acad Sci U S A, 2007-10-16) Wu, Judy Qiju; Hansen, David V; Guo, Yanxiang; Wang, Michael Zhuo; Tang, Wanli; Freel, Christopher D; Tung, Jeffrey J; Jackson, Peter K; Kornbluth, SallyBefore fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.Item Open Access Emi2-mediated inhibition of E2-substrate ubiquitin transfer by the anaphase-promoting complex/cyclosome through a D-box-independent mechanism.(Mol Biol Cell, 2010-08-01) Tang, Wanli; Wu, Judy Qiju; Chen, Chen; Yang, Chih-Sheng; Guo, Jessie Yanxiang; Freel, Christopher D; Kornbluth, SallyVertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a "pseudosubstrate" mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.Item Open Access Regulation of Anaphase Promoting Complex/Cyclosome to Control M Phase Exit(2010) Tang, WanliThe Anaphase Promoting Complex/Cyclosome (APC/C) is a RING E3 ligase that plays essential roles both within and outside of the cell cycle. At the onset of anaphase, the APC/C targets cyclin B and securin for degradation, initiating chromosome separation and mitotic exit. Regulation of APC/C activity is critical for a functional cell cycle, and this is largely mediated by cytostatic factor (CSF) activity and the Spindle Assembly Checkpoint (SAC).
Prior to fertilization, vertebrate eggs are arrested in metaphase of meiosis II by CSF activity, a key component of which is the APC/C inhibitor Emi2. Although the roles and regulation of Emi2 in maintaining CSF arrest have been extensively studied, its function during the oocyte maturation process, especially at the meiosis I to meiosis II (MI-MII) transition, was not well understood. Studies presented in this dissertation characterize an Emi2-mediated auto-inhibitory loop of the APC/C that provides the molecular basis of a critical biochemical event during the MI-MII transition--the partial degradation of cyclin B. In brief, phosphorylation of the Emi2 N-terminus by Cdc2/cyclin B targets it for proteasomal degradation in meiosis I (MI). During anaphase of MI, the APC/C triggers its own inactivation by degrading cyclin B, therefore stabilizing its inhibitor, Emi2. The timely inactivation of APC/C activity prevents the complete inactivation of Cdc2 kinase, which is crucial for prohibiting S phase onset and parthenogenetic activation of the oocytes.
To better understand the regulation of the APC/C, a number of the studies presented here are aimed at identifying the mechanism for Emi2 inhibition of the APC/C. Many APC/C inhibitors have been reported to function as "pseudosubstrates", which inhibit the APC/C by preventing substrate binding. After carefully examining the ubiquitin reactions mediated by the APC/C in vitro, we have found that it is the last step in the ubiquitylation process, where ubiquitin is transferred from a charged E2 to the substrate, that is targeted by Emi2. In addition, biochemical studies have also revealed that Emi2 itself has RING-dependent ligase activity and this activity enables it to inhibit the APC/C in a sub-stoichiometrical manner.
Although the ultimate goal for both CSF activity and the SAC signaling pathway is APC/C inhibition, a much more complicated regulatory network is known to control SAC. Previous researches in our lab have identified Xnf7 to be an APC/C inhibitor that is required for the SAC pathway in Xenopus egg extract. In an effort to characterize the human Xnf7 homolog, we have found that Trim39, a protein that has been implicated in apoptosis regulation, is required for the SAC pathway in RPE cells. Like Emi2, both Xnf7 and Trim39 are RING E3 ligases whose activity is essential for their function. Interestingly, the ligase activity of both proteins appears to be regulated by the checkpoint. While we continue to characterize the roles and regulation of both Trim39 and Xnf7 in the SAC, future investigations into the mechanisms that underlie APC/C inhibition by all the three E3 ligases--Emi2, Xnf7 and Trim39--would be of great interest.
Item Open Access The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1.(J Cell Biol, 2012-04-30) Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli; Chen, Chen; Yang, Chih-Sheng; Kornbluth, SallyProapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.Item Open Access Ubiquitylation of p53 by the APC/C inhibitor Trim39.(Proc Natl Acad Sci U S A, 2012-12-18) Zhang, Liguo; Huang, Nai-Jia; Chen, Chen; Tang, Wanli; Kornbluth, SallyTripartite motif 39 (Trim39) is a RING domain-containing E3 ubiquitin ligase able to inhibit the anaphase-promoting complex (APC/C) directly. Through analysis of Trim39 function in p53-positive and p53-negative cells, we have found, surprisingly, that p53-positive cells lacking Trim39 could not traverse the G1/S transition. This effect did not result from disinhibition of the APC/C. Moreover, although Trim39 loss inhibited etoposide-induced apoptosis in p53-negative cells, apoptosis was enhanced by Trim39 knockdown in p53-positive cells. Furthermore, we show here that the Trim39 can directly bind and ubiquitylate p53 in vitro and in vivo, leading to p53 degradation. Depletion of Trim39 significantly increased p53 protein levels and cell growth retardation in multiple cell lines. We found that the relative importance of Trim39 and the well-characterized p53-directed E3 ligase, murine double minute 2 (MDM2), varied between cell types. In cells that were relatively insensitive to the MDM2 inhibitor, nutlin-3a, apoptosis could be markedly enhanced by siRNA directed against Trim39. As such, Trim39 may serve as a potential therapeutic target in tumors with WT p53 when MDM2 inhibition is insufficient to elevate p53 levels and apoptosis.