Browsing by Author "Tang, Y"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Correction to: AI is a viable alternative to high throughput screening: a 318-target study (Scientific Reports, (2024), 14, 1, (7526), 10.1038/s41598-024-54655-z)(Scientific Reports, 2024-12-01) Giles, E; Heifets, A; Artía, Z; Inde, Z; Liu, Z; Zhang, Z; Wang, Z; Su, Z; Chung, Z; Frangos, ZJ; Li, Y; Yen, Y; Sidorova, YA; Tse-Dinh, YC; He, Y; Tang, Y; Li, Y; Pérez-Pertejo, Y; Gupta, YK; Zhu, Y; Sun, Y; Li, Y; Chen, Y; Aldhamen, YA; Hu, Y; Zhang, YJ; Zhang, X; Yuan, X; Wang, X; Qin, X; Yu, X; Xu, X; Qi, X; Lu, X; Wu, X; Blanchet, X; Foong, WE; Bradshaw, WJ; Gerwick, WH; Kerr, WG; Hahn, WC; Donaldson, WA; Van Voorhis, WC; Zhang, W; Tang, W; Li, W; Houry, WA; Lowther, WT; Clayton, WB; Van Hung Le, V; Ronchi, VP; Woods, VA; Scoffone, VC; Maltarollo, VG; Dolce, V; Maranda, V; Segers, VFM; Namasivayam, V; Gunasekharan, V; Robinson, VL; Banerji, V; Tandon, V; Thai, VC; Pai, VP; Desai, UR; Baumann, U; Chou, TF; Chou, T; O’Mara, TA; Banjo, T; Su, T; Lan, T; Ogunwa, TH; Hermle, T; Corson, TW; O’Meara, TR; Kotzé, TJ; Herdendorf, TJ; Richardson, TI; Kampourakis, T; Gillingwater, TH; Jayasinghe, TD; Teixeira, TR; Ikegami, T; Moreda, TL; Haikarainen, T; Akopian, T; Abaffy, T; Swart, T; Mehlman, T; Teramoto, T; Azeem, SM; Dallman, S; Brady-Kalnay, SM; Sarilla, S; Van Doren, SR; Marx, SO; Olson, SH; Poirier, S; Waggoner, SNCorrection to: Scientific Reportshttps://doi.org/10.1038/s41598-024-54655-z, published online 02 April 2024 The original version of this Article contained errors. In the original version of this article, Ellie Giles was omitted from the Author list. Additionally, the following Affiliation information has been updated: 1. Affiliation 25 was incorrect. Affiliation 25 ‘Queensland University of Technology, Brisbane, USA.’ now reads, ‘Queensland University of Technology, Brisbane, Australia.’ 2. Marta Giorgis was incorrectly affiliated with the ‘University of Aberdeen, Aberdeen, UK.’ The correct Affiliation is listed below: ‘University of Turin, Turin, Italy.’ 3. Affiliations 52, 125 and 261 were duplicated. As a result, the correct Affiliation for Andrew B. Herr, Benjamin Liou, David A. Hildeman, Joseph J. Maciag, Ying Sun, Durga Krishnamurthy, and Stephen N. Waggoner is: ‘Cincinnati Children’s Hospital Medical Center, Cincinnati, USA.’ Furthermore, an outdated version of Figure 1 was typeset. The original Figure 1 and accompanying legend appear below. (Figure presented.) Pairs of representative compounds extracted from AI patents (right) and corresponding prior patents (left) for clinical-stage programs (CDK792,93, A2Ar-antagonist94,95, MALT196,97, QPCTL98,99, USP1100,101, and 3CLpro102,103). The identical atoms between the chemical structures are highlighted in red. Lastly, The Acknowledgements section contained an error. “See Supplementary section S1.” now reads, “See Supplementary section S2.” The original Article has been corrected.Item Open Access Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor.(Proc Natl Acad Sci U S A, 1999-10-26) Tang, Y; Hu, LA; Miller, WE; Ringstad, N; Hall, RA; Pitcher, JA; DeCamilli, P; Lefkowitz, RJSeveral G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.