Browsing by Author "Tanouchi, Yu"
Results Per Page
Sort Options
Item Open Access A noisy linear map underlies oscillations in cell size and gene expression in bacteria.(Nature, 2015-07-16) Tanouchi, Yu; Pai, Anand; Park, Heungwon; Huang, Shuqiang; Stamatov, Rumen; Buchler, Nicolas E; You, LingchongDuring bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.Item Open Access A Synthetic-biology Approach to Understanding Bacterial Programmed Death and Implications for Antibiotic Treatment(2013) Tanouchi, YuProgrammed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is `altruistic': the sacrifice of some cells can benefit the survivors through release of `public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, I determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. I further predicted that altruistic death could generate the `Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, I experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. These findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.
Item Open Access Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology.(PLoS One, 2010-07-30) Marguet, Philippe; Tanouchi, Yu; Spitz, Eric; Smith, Cameron; You, LingchongSynthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the P(luxI) promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.Item Open Access Programming stress-induced altruistic death in engineered bacteria.(Mol Syst Biol, 2012) Tanouchi, Yu; Pai, Anand; Buchler, Nicolas E; You, LingchongProgrammed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is 'altruistic': the killing of some cells can benefit the survivors through release of 'public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the 'Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.