Browsing by Author "Tasciotti, Ennio"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Biocompatible PLGA-Mesoporous Silicon Microspheres for the Controlled Release of BMP-2 for Bone Augmentation.(Pharmaceutics, 2020-02) Minardi, Silvia; Fernandez-Moure, Joseph S; Fan, Dongmei; Murphy, Matthew B; Yazdi, Iman K; Liu, Xuewu; Weiner, Bradley K; Tasciotti, EnnioBone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.Item Open Access Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery.(Theranostics, 2018-01-05) Martinez, Jonathan O; Molinaro, Roberto; Hartman, Kelly A; Boada, Christian; Sukhovershin, Roman; De Rosa, Enrica; Kirui, Dickson; Zhang, Shanrong; Evangelopoulos, Michael; Carter, Angela M; Bibb, James A; Cooke, John P; Tasciotti, EnnioActivation of the vascular endothelium is characterized by increased expression of vascular adhesion molecules and chemokines. This activation occurs early in the progression of several diseases and triggers the recruitment of leukocytes. Inspired by the tropism of leukocytes, we investigated leukocyte-based biomimetic nanoparticles (i.e., leukosomes) as a novel theranostic platform for inflammatory diseases. Methods: Leukosomes were assembled by combining phospholipids and membrane proteins from leukocytes. For imaging applications, phospholipids modified with rhodamine and gadolinium were used. Leukosomes incubated with antibodies blocking lymphocyte function-associated antigen 1 (LFA-1) and CD45 were administered to explore their roles in targeting inflammation. In addition, relaxometric assessment of NPs was evaluated. Results: Liposomes and leukosomes were both spherical in shape with sizes ranging from 140-170 nm. Both NPs successfully integrated 8 and 13 µg of rhodamine and gadolinium, respectively, and demonstrated less than 4% variation in physicochemical features. Leukosomes demonstrated a 16-fold increase in breast tumor accumulation relative to liposomes. Furthermore, quantification of leukosomes in tumor vessels demonstrated a 4.5-fold increase in vessel lumens and a 14-fold increase in vessel walls. Investigating the targeting mechanism of action revealed that blockage of LFA-1 on leukosomes resulted in a 95% decrease in tumor accumulation. Whereas blockage of CD45 yielded a 60% decrease in targeting and significant increases in liver and spleen accumulation. In addition, when administered in mice with atherosclerotic plaques, leukosomes exhibited a 4-fold increase in the targeting of inflammatory vascular lesions. Lastly, relaxometric assessment of NPs demonstrated that the incorporation of membrane proteins into leukosomes did not impact the r1 and r2 relaxivities of the NPs, demonstrating 6 and 30 mM-1s-1, respectively. Conclusion: Our study demonstrates the ability of leukosomes to target activated vasculature and exhibit superior accumulation in tumors and vascular lesions. The versatility of the phospholipid backbone within leukosomes permits the incorporation of various contrast agents. Furthermore, leukosomes can potentially be loaded with therapeutics possessing diverse physical properties and thus warrant further investigation toward the development of powerful theranostic agents.Item Open Access Characterization of Mesenchymal Stem Cells from Human Cortical Bone(International Journal of Translational Science, 2016) Fernandez-Moure, Joseph S; Corradetti, Bruna; Janecek, Trevor; Eps, Jeffrey Van; Burn, Matthew; Weine, Bradley K; Rameshwar, Pranela; Tasciotti, EnnioItem Open Access Decreased hernia recurrence using autologous platelet-rich plasma (PRP) with Strattice™ mesh in a rodent ventral hernia model.(Surgical endoscopy, 2016-08) Van Eps, Jeffrey; Fernandez-Moure, Joseph; Cabrera, Fernando; Wang, Xin; Karim, Azim; Corradetti, Bruna; Chan, Paige; Dunkin, Brian; Tasciotti, Ennio; Weiner, Bradley; Ellsworth, WarrenBackground
Recurrence after ventral hernia repair (VHR) remains a multifactorial problem still plaguing surgeons today. Some of the many contributing factors include mechanical strain, poor tissue-mesh integration, and degradation of matrices. The high recurrence rate witnessed with the use of acellular dermal matrices (ADM) for definitive hernia repair has reduced their use largely to bridging repair and breast reconstruction. Modalities that improve classic cellular metrics of successful VHR could theoretically result in improved rates of hernia recurrence; autologous platelet-rich plasma (PRP) may represent one such tool, but has been underinvestigated for this purpose.Methods
Lewis rats (32) had chronic ventral hernias created surgically and then repaired with Strattice™ mesh alone (control) or mesh + autologous PRP. Samples were harvested at 3 and 6 months postoperatively and compared for gross, histologic, and molecular outcomes of: neovascularization, tissue incorporation, peritoneal adhesions, hernia recurrence, and residual mesh thickness.Results
Compared to control at 3 months postoperatively, PRP-treated rats displayed significantly more neovascularization of implanted mesh and considerable upregulation of both angiogenic genes (vEGF 2.73-fold, vWF 2.21-fold) and myofibroblastic genes (αSMA 9.68-fold, FSP-1 3.61-fold, Col1a1 3.32-fold, Col31a1 3.29-fold). Histologically, they also showed enhanced tissue deposition/ingrowth and diminished chronic immune cell infiltration. Peritoneal adhesions were less severe at both 3 (1.88 vs. 2.94) and 6 months (1.63 vs. 2.75) by Modified Hopkins Adhesion Scoring. PRP-treated rats experienced decreased hernia recurrence at 6 months (0/10 vs. 7/10) and had significantly improved ADM preservation as evidenced by quantification of residual mesh thickness.Conclusions
PRP is an autologous source of pro-regenerative growth factors and chemokines uniquely suited to soft tissue wound healing. When applied to a model of chronic VHR, it incites enhanced angiogenesis, myofibroblast recruitment and tissue ingrowth, ADM preservation, less severe peritoneal adhesions, and diminished hernia recurrence. We advocate further investigation regarding PRP augmentation of human VHR.Item Open Access Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis.(Stem cell research & therapy, 2015-10) Fernandez-Moure, Joseph S; Corradetti, Bruna; Chan, Paige; Van Eps, Jeffrey L; Janecek, Trevor; Rameshwar, Pranela; Weiner, Bradley K; Tasciotti, EnnioIntroduction
Mesenchymal stem cells (MSCs) hold great promise for regenerative therapies in the musculoskeletal system. Although MSCs from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) have been extensively characterized, there is still debate as to the ideal source of MSCs for tissue-engineering applications in bone repair.Methods
MSCs were isolated from cortical bone fragments (CBF-MSCs) obtained from patients undergoing laminectomy, selected by fluorescence-activated cell sorting analysis, and tested for their potential to undergo mesodermic differentiation. CBF-MSCs were then compared with BM-MSCs and AD-MSCs for their colony-forming unit capability and osteogenic potential in both normoxia and hypoxia. After 2 and 4 weeks in inducing media, differentiation was assessed qualitatively and quantitatively by the evaluation of alkaline phosphatase (ALP) expression and mineral deposition (Von Kossa staining). Transcriptional activity of osteoblastogenesis-associated genes (Alp, RUNX2, Spp1, and Bglap) was also analyzed.Results
The cortical fraction of the bone contains a subset of cells positive for MSC-associated markers and capable of tri-lineage differentiation. The hypoxic conditions were generally more effective in inducing osteogenesis for the three cell lines. However, at 2 and 4 weeks, greater calcium deposition and ALP expression were observed in both hypoxic and normoxic conditions in CBF-MSCs compared with AD- and BM-MSCs. These functional observations were further corroborated by gene expression analysis, which showed a significant upregulation of Bglap, Alp, and Spp1, with a 22.50 (±4.55)-, 46.56 (±7.4)-, 71.46 (±4.16)-fold increase compared with their uninduced counterparts.Conclusions
This novel population of MSCs retains a greater biosynthetic activity in vitro, which was found increased in hypoxic conditions. The present study demonstrates that quantitative differences between MSCs retrieved from bone marrow, adipose, and the cortical portion of the bone with respect to their osteogenic potential exist and suggests the cortical bone as suitable candidate to use for orthopedic tissue engineering and regenerative medicine.Item Open Access Improved Posterolateral Lumbar Spinal Fusion Using a Biomimetic, Nanocomposite Scaffold Augmented by Autologous Platelet-Rich Plasma.(Frontiers in bioengineering and biotechnology, 2021-01) Van Eps, Jeffrey L; Fernandez-Moure, Joseph S; Cabrera, Fernando J; Taraballi, Francesca; Paradiso, Francesca; Minardi, Silvia; Wang, Xin; Aghdasi, Bayan; Tasciotti, Ennio; Weiner, Bradley KRemodeling of the human bony skeleton is constantly occurring with up to 10% annual bone volume turnover from osteoclastic and osteoblastic activity. A shift toward resorption can result in osteoporosis and pathologic fractures, while a shift toward deposition is required after traumatic, or surgical injury. Spinal fusion represents one such state, requiring a substantial regenerative response to immobilize adjacent vertebrae through bony union. Autologous bone grafts were used extensively prior to the advent of advanced therapeutics incorporating exogenous growth factors and biomaterials. Besides cost constraints, these applications have demonstrated patient safety concerns. This study evaluated the regenerative ability of a nanostructured, magnesium-doped, hydroxyapatite/type I collagen scaffold (MHA/Coll) augmented by autologous platelet-rich plasma (PRP) in an orthotopic model of posterolateral lumbar spinal fusion. After bilateral decortication, rabbits received either the scaffold alone (Group 1) or scaffold with PRP (Group 2) to the anatomic right side. Bone regeneration and fusion success compared to internal control were assessed by DynaCT with 3-D reconstruction at 2, 4, and 6 weeks postoperatively followed by comparative osteogenic gene expression and representative histopathology. Both groups formed significantly more new bone volume than control, and Group 2 subjects produced significantly more trabecular and cortical bone than Group 1 subjects. Successful fusion was seen in one Group 1 animal (12.5%) and 6/8 Group 2 animals (75%). This enhanced effect by autologous PRP treatment appears to occur via astounding upregulation of key osteogenic genes. Both groups demonstrated significant gene upregulation compared to vertebral bone controls for all genes. Group 1 averaged 2.21-fold upregulation of RUNX2 gene, 3.20-fold upregulation of SPARC gene, and 3.67-fold upregulation of SPP1 gene. Depending on anatomical subgroup (cranial, mid, caudal scaffold portions), Group 2 had significantly higher average expression of all genes than both control and Group 1-RUNX2 (8.23-19.74 fold), SPARC (18.67-55.44 fold), and SPP1 (46.09-90.65 fold). Our data collectively demonstrate the osteoinductive nature of a nanostructured MHA/Coll scaffold, a beneficial effect of augmentation with autologous PRP, and an ability to achieve clinical fusion when applied together in an orthotopic model. This has implications both for future study and biomedical innovation of bone-forming therapeutics.Item Open Access Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study.(Journal of tissue engineering, 2016-01) Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Rhudy, Jessica R; Cabrera, Fernando J; Acharya, Ghanashyam S; Tasciotti, Ennio; Sakamoto, Jason; Nichols, Joan ESurgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson's trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation associated with improved surgical outcomes. Porcine acellular lung matrices are a novel class of acellular tissue scaffold. The increased cell and vessel density may promote long-term improved incorporation and mechanical properties. These findings may be due to the native lung scaffold architecture guiding cell migration and vessel formation. Porcine acellular lung matrices represent a new alternative for surgical wound healing applications where increased cell density and vessel formation are sought.Item Open Access Rapamycin-Loaded Leukosomes Reverse Vascular Inflammation(Circulation Research) Boada, Christian; Zinger, Assaf; Tsao, Christopher; Zhao, Picheng; Martinez, Jonathan O; Hartman, Kelly; Naoi, Tomoyuki; Sukhoveshin, Roman; Sushnitha, Manuela; Molinaro, Roberto; Trachtenberg, Barry; Cooke, John P; Tasciotti, Ennio